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PHEFACE.

The following work is intended as an introductory text-

book on Solid Geometry, and I have endeavoured to present

the elementary parts of the subject in as simple a manner as

possible. Those who desire fuller information are referred to

the more complete treatises of Dr Salmon and Dr Frost, to

both of which I am largely indebted.

I have discussed the different surfaces which can be

represented by the general equation of the second degree at

an earlier stage than is sometimes adopted. I think that

this arrangement is for many reasons the most satisfactory,

and I do not believe that beginners will find it difficult.

The examples have been principally taken from recent

University and College Examination papers ; I have also

included many interesting theorems of M. Chasles.

I am indebted to several of my friends, particularly to

Mr S. L. Loney, B.A., and to Mr R. H. Piggott, B.A., Scholars

of Sidney Sussex College, for their kindness in looking over

the proof sheets, and for valuable suggestions.

CHAKLES SMITH.
Sidney Sussex College,

April, 1884.
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SOLID GEOMETKY.

CHAPTER I.

CO-ORDINATES.

1. The position of a point in space is usually determined
by referring it to three fixed planes. The point of inter-

section of the planes is called the origin, the fixed planes are

called the co-ordinate 'planes, and their lines of intersection

the co-ordinate axes. The three co-or^dinates of a point are

its distances from each of the three co-ordinate planes,

measured parallel to the lines of intersection of the other

two. When the three co-ordinate planes, and therefore the

three co-ordinate axes, are at right angles to each other, the

axes are said to be rectangular.

2. The position of a point is completely determined when
its co-ordinates are known. For, let YOZ, ZOX, XOY be

the co-ordinate planes, and X' OX, Y'OY, Z'OZhe the axes,

and let LP, MP, NP, be the co-ordinates of P. The planes

MPN, NPL, XPJ/are parallel respectively to YOZ, ZOX,
XOY; if therefore they meet the axes in Q, B, S, as in the

figure, we have a parallelepiped of which OP is a diagonal;

and, since parallel edges of a parallelepiped are equal,

LP=OQ, MP = OR, and XP = OS.

Hence, to find a point whose co-ordinates are given, we have

only to take OQ, OP, OS equal to the given co-ordinates,

S. s. G. 1



CO-ORDINATES.

3,nd drai^ tbt-ee planes tliroiigh Q, R, S parallel respectively
to the co-ordinate planes ; then the point of intersection of
these planes will be the point required.



CO-ORDINATES. 3

4. To find the co-ordinates of the point which divides the
straight line joining two given points in a given ratio.

Let P, Q be the given points, and R the point which
divides PQ in the given ratio m^ : m^

.

Let Pbe (a^^, y^, z^, Q be (a-,, y,, z.^, and R be [x, y, z).

Draw PL, QM, B^'' parallel to OZ meeting XO Y in Z, i/,

iV^. Then the points P, Q, R, L, M, N are clearly all in one
plane, and a line through P parallel to LM will be in that

plane, and will therefore meet QM, RN, in the points K, H
suppose.

^, ER PR m,
Then -777^ = -jT7\ = — •KQ PQ m^ + ??i2

But LP = z^, MQ = z.^,NR = z)

z — z
I — m.

^2 1

Similarly

^ =

57 =

and ?/ =

m^z,^ + m./j

7?i^ + rti.^

When PQ is divided externally, m^ is negative.

1—2



4 CO-OKDINATES.

The most useful case is where the line PQ is bisected : the

co-ordinates of the point of bisection are

The above results are true whatever the angles between

the co-ordinate axes may be.

We shall in future consider the axes to he rectangular in

all cases except ivhen the contrary is expressly stated.

5. To express the distance between two points in terms of
their co-ordinates.

Let Pbe the point {x^, y^, z^ and Q the point {x.^, 7/^, z^).

Draw through P and Q planes parallel to the co-ordinate

planes, forming a parallelepiped whose diagonal is FQ.

_V



CO-ORDINATES. - 5

Ex. 1 . The co-ordinates of the centre ofgravity of the trianglewhose angular J
points are (Xj, y^, z-^, (ojg, y^ Zg). (a^' 2/3' ^3) ^re \ (x^ + ar.^ + ar^), \ {yi + y^ + Vz)^

and i (% + -22 + ^3)-

Ex. 2. Shew that the three lines joining the middle points of opposite

edges of a tetrahedron meet in a point. Shew also that this point is on the J
line joining any angular point to the centre of gravity of the opposite face,

and divides that line in the ratio of 3:1.

Ex. 3. Eind the locus of points which are equidistant from the points

(1, 2, 3) and (3, 2, - 1). Aiis. x - 2z= 0.

Ex. 4. Shew that the point (|, 0, |) is the centre of the sphere which /

passes through the four points (1, 2, 3), (3, 2, - 1), ( - 1, 1, 2) and (1, - 1, - 2). ^

6. Let Of, fi, 7 be the angles which the line PQ makes
with lines through P parallel to the axes of co-ordinates.

Then, since in the figure to Art. 5 the angles PLQ, PMQy PKQ
are right angles, we have

PQ cos a = PL,
PQcos/3 = Pil/,

and PQ cos 7 = PN.

Square and add, then

PQ' {cos^a + cos'^yS + cos^} = PL' + PJ\P + PF' = PQ\

Hence cos^a + cos^yS + cos^7 = 1.

The cosines of the angles which a straight line makes

with the positive directions of the co-ordinate axes are called

its direction-cosines, and we shall in future denote these

cosines by the letters I, m, n.

From the above we see that any three direction-cosines

are connected by the relation l^ -\-
m'

-h n' = 1. If the

direction-cosines of PQ be Z, m, n, it is easily seen that those

of QP will be — Z, — ??i, — n ; and it is immaterial whether we
consider I, m, n, or the same quantities with all the signs

changed, as direction-cosines.

If we know that a, 6, c are proportional to the direction-

cosines of some line, we can at once find those direction-

cosines. For we have - = -^ = - : hence each is equal to
a b c

V(f + m' + »')
.

1 ;_ «
&C

V(a'+ b'+c')
'

^{a' + b' + c')
'

'

'

-Jia' + b' + r) "
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Ex. Th« direction-cosines of a line are proportional to 3, - 4, 12, find

their actual values. Am. x\, — tV> tI«

7. The projection of a point on any line is the point

where the line is met by a plane through the point per-

pendicular to the line. Thus, in the figure to Art. 2, Q, R, S
are the projections of P on the lines OX, OY, OZ re-

spectively.

The jDrojection of a straight line of limited length on

another straight line is the length intercepted between

the projections of its extremities. If we have any number of

points P, Q, R, S... whose projections on a straight line are

p, q, r, s..., then the projections of PQ, QR, RS... on the

line, are pq, qr, vs....

In estimating these projections we must consider the

same direction as positive throughout, so that we shall

always have pq + qi^ + rs = ps, that is the projection of

PS on any line is equal to the algebraic sum of the pro-

jections of PQy QR and RS. This result may be stated in a

more general form as follows:—The algebraic sum of the

projections of any number of sides of a polygon beginning at

P and ending at Q is equal to the projection of PQ.

8. If we have any number of parallel straight lines, the

projections of any other line PQ on them are the intercepts

between planes through P and Q perpendicular to their

directions. These intercepts are clearly all equal ; hence the

projections of any line on a series of parallel straight lines

are all equal. And, since the projection of a straight line on
an intersecting straight line is found by multiplying its

length by the cosine of the angle between the lines, we have
the following proposition :

—

The projection of a finite straight line on any other

straight line is equal to its length multiplied hy the cosine of
the angle between the lines.

9. In the figure to Art. 2, let OQ = a,OR = h, 0S= c.

Then it is clear that a) = a for all points on the plane
PMQN, and that y — hioi all points on the plane PNRL,
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and that ^ = c for all points on the plane PLSM. Also
along the line NP we have x = a, and y = h; and at the

point P we have the three relations x = a, y = h, z = c.

So that a plane is determined by one equation, a straight

line by two equations, and a point by three equations.

In general, any single equation of the form F (cc, y, z) = 0,

in which the variables are the co-ordinates of a point,

represents a surface of some kind ; two equations represent a
curve, and three equations represent one or more points. This

we proceed to prove.

10. Let two of the variables be absent, so that the

equation of the surface is of the form F (x) = 0. Then the

equation is equivalent to {x — a) (x — h) (x — c) = 0, where
a, h, c,... are the roots of F{x) = 0', hence all the points

whose co-ordinates satisfy the equation F{x) — are on one

or other of the _/9?a?ie.9 x — a — 0, a? — 6 = 0, x — c= 0,

Let one of the variables be absent, so that the equation

is of the form F {x, y) = 0. Let P be any point in the plane

z = whose co-ordinates satisfy the equation F {x,y) =0
;

then the co-ordinates of all points in the line through P
parallel to the axis of z, are the same as those of P, so far as

X and y are concerned ; it therefore follows that all such

points are on the surface. Hence the surface represented by
the equation F (x, y) = is traced out by a line which is

always parallel to the axis of z, and which moves along the

curve in the plane z~0 defined by the equation F{x, y) = 0.

Such a surface is called a cylindrical surface, or cylinder.

Next let the equation of the surface be F(x,y,z) = 0.

We have seen that all points for which x = a, and y=h
lie on a straight line parallel to the axis of z. Hence, if in

the equation F(x, y, z) = 0, we put x = a, and y = 'b, the roots

of the resulting equation in z will give the points in which

the locus is met by a hne through {a, b, 0) parallel to the axis

oi z.

Since the number of roots is finite, the straight line will

meet the locus in a finite number of points, and therefore the

locus, which is the assemblage of all such points for different

values of a and 6, must be a surface and not a solid figure.
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11. The points whose co-ordinates satisfy two equations

must be on both the surfaces which those equations represent

and therefore the locus is the curve determined by the intersec-

tion of the two surfaces. When three equations are given, we
have sufficient equations to find the co-ordinates, although there

may be more than one set of values, so that three equations

represent one or more points.

12. The position of a point in space can be defined by
other methods besides the one described in Art. 1.

Another method is the following : an origin is taken, a
fixed line OZ through 0, and a fixed plane XOZ. The
position of a point P is completely determined when its

distance from the fixed point 0, the angle ZOP, and the angle

between the planes XOZ, and POZ are given. These co-

ordinates are called Polar Co-ordinates, and are usually de-

noted by the symbols r, 6 and (/>, and the point is called the

point (r, 6,
(f)).

If OX be perpendicular to OZ, and F be perpendicular

to the plane ZOX, we can express the rectangular co-ordinates

of P in terms of its polar co-ordinates.

Draw PX perpendicular to the plane XOY^ and NM
perpendicular to OX, and join ON, Then

x — OM = OX cos (j) — OP sin 6 cos <^ = r sin 6 cos
<f),

y =MX= ON s'm ^ = OP sin ^ sin ^ = 7- sin 6 sin <p,

and z = XP = OP cos 6 = r cos 6.

We can also express the polar co-ordinates of any point in

terms of the rectangular. The values are,

r = s/(x'-h f + z'), e = tan-^
VV±j^^ ^^^ ^ = tan"^ ^ .

X



CHAPTER IT.

The Plane.

13. Tojhew that the surface rei:>resented hj the general
equation of the first degree is a i^lane.

The most general equation of the first degree is

Ax+By-\-Cz+D = 0.

If (^V y^y z) and {x^, y^, zj be any two points on the locus,
we have

Ax^ + By^ + C\-\-I) = 0,

^^'^^ Ax^ + %^ + (7^^ + X) = 0.

Multiply these in order by
^'^'-'

, and —^^i— and add:

then we have

A !!^i±^i3 ;_ ^ ^2 ^1 + ^1 ^2 . r^
'^\ ^1 + ^^ ^.

, n = n

This shews [Art. 4] that if the points {x^, y„ z^), {x^, y^, z,) be
on the locus, any other point in the line joining them is also
on the locus; this shews that the locus satisfies Euclid's
definition of a plane.

14. To find the equation ofaj^flane.

Let p be the length of the perpendicular ON from the
origin on the plane, and let /, m, 7i be the direction-cosines of
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the perpendicular. Let P be any point on the plane, and draw
PL perpendicular on XOY^ and LM perpendicular to OX.

Then the projection of OP on ON is equal to the sum
of the projections of OM, ML and LP on ON.

Hence if P be {x, y, z)y we have

Ix -^ my •\- nz =p (i),

the required equation.

By comparing the general equation of the first degree

with (i), we see that the direction-cosines of the normal to the

plane given by the general equation of the first degree are

proportional to A, B, C ; and therefore [Art. 6] are equal to

A B G
V(^' + -S'+C'^)' '^{A' + B'+C')' sJiA'+B'^+Cy

Also the perpendicular from the origin on the plane is

equal to —D
s/{A' + B'+Gy

15, To find where the plane whose equation is

Ax + By+Gz-^D = 0,

meets the axis of x we must put 3/ = 2 = ; hence if the

intercept on the axis of x be a, we have Aa -\- D = 0.

Similarly if the intercepts on the other axes are h and c

we have Bb +B = 0, and Cc {• D = 0. Hence the equation

of the plane is

X y z ^
- + ';- + -=i.
a c

This equation can easily be obtained independently.
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16. To find the equation of the plane through three given

points.

Let the three points be (x^, y^, z^), (^^, y^, z^, {x^, y^, z^).

The general equation of a plane is

Ax + By + Cz + D = 0.

If the three given points are on this plane, we have

Axj^ + By^ + C2^ + D = 0,

Ax^ + By^ + Cz^ + D = 0,

and Ax^ + By^ + Cz^ + D = 0.

Eliminating A, B, C, I) from these four equations, we
have for the required equation

X
, y , z

X
1 ' 1 >

X.
2 ' '2 '

X„

= 0.

2/i.

3/2 >

17. li S=0 and S' = be the equations of two planes,

>S^— X, S' = will be the general equation of a plane through
their intersection. For, since S and S' are both of the first

degree, so also is S— X8' ; and hence >S^ — XS' = represents

a plane. The plane- passes through all points common to

>S^ = and S' = 0; for if the co-ordinates of any point satisfy

>S*= and >S" = 0, those co-ordinates will also satisfy S = \S'.

Hence, since X is arbitrary, 8 — XS' = is the general

equation of a plane through the intersection of the given

planes.

18. To find the conditions that three planes may have a
common line of intersection.

het the equations of the planes be

ax + by-rcz + d = (i),

a'x-\-b'y + cz + d' = (ii),

and a'x + h'y + c'z+d" = (iii).

The equation of any plane through the line of intersection

of (i) and (ii) is of the form

(ax + hy + cz-\-d)+X (ax + Vy + c'z + d') = 0. . .(iv).
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If the three planes have a common line of intersection, we
can, by properly choosing X, make (iv) represent the same
plane as (iii). Hence corresponding coefficients must bo

proportional, so that

a 4- \a h 4- XZ/' c + Xc _d + Xd'
' '' T^' T'^ ZF^ *

a c a

Put each fraction equal to — fi, then we have

a + \a + fia" = 0,

h +W + fMb'' =0,

c + \c + ijlg' =• 0,

and d + \d' + fjLd'' = 0.

Eliminating X and
fj,

we have the required conditions,

namely
a , h , c , d

I i

= 0,

a
J

h' , c y d!
II 7 n ff -III

a , , c , d

the notation indicatiuG^ that each of the four determinants, ob-

tained by omitting one of the vertical columns, is zero.*

19. We can shew, exactly as in Conies, Art. 26, that if

Ax + B^/ + Cz + D = be the equation of a plane, and w, y, z

be the co-ordinates of any point, then Ax + By + Gz + D
will be positive for all points on one side of the plane, and
negative for all j^oints on the other side.

20. To find the jperpendicular distance of a given point

from a given 23lane.

Let the equation of the given plane be

Ix •\-my + nz=p (i),

and let x\ y\ z be the co-ordinates of the given point P. The
equation

Ix 4- my + ')iz = p (ii)

is the equation of a plane parallel to the given plane.

It will pass through the point (x, y\ z) if

Ix + my' •\-nz =jp>' (iii).

* It is easy to shew that there are only tico independent conditions, as is

geometrically obvious, for if the planes have two points in common they

must have a common line of intersection.
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Now if PL be the perpendicular from P on the plane (i),

and ON, ON' the perpendiculars from the origin on the planes

(i) and (ii) respectively, then will

LP = NN'
=p'-p
= Ix' 4- fny' + nz — p.

Hence the length of the perpendicular from any point on
the plane Ix + my + nz —p = is obtained by substituting the

co-ordinates of the point in the expression lx-\- my -\-nz~-p.

If the equation of the plane be Ax + By + Cz + D = 0, it

may be written

A B G

+ ^ =

Avhich is of the same form as (i) ; therefore the length of the

perpendicular from {x
,
y', z) on the plane is

Ax+By'+ Cz+D
*J[A + B' + G']

•

Ex. 1. Find the equation of the plane through (2, 3, - 1) parallel to the /
plane 3x -Ay + lz = Q. Am. Sx - 4?/ + 7z + 13 = 0.

Ex. 2. Find the equation of the plane through the origin and through
the intersection of the two planes 5x-hy + 2z-\-b — and 3a; - 5^/ - 22 - 7 = 0.

Ans. 25ic-23?/ + 22= 0.

Ex.3. Shew that the three planes 2a; + 5?/ + 3s= 0, x-y + Az = 2, and ^
7y - 52 + 4 = intersect in a straight line.

Ex.4. Shewthatthefoarplanes2x— 3?/ + 22 = 0, CC + ?/- 32 = 4,3.x-2/ + 2=2, /'

and Ix- 5y + 62— 1 meet in a point.

Ex.5. Shew that the four points (0,-1,-1) (4, 5, 1), (3, 9, 4) and V^
( - 4, 4, 4,) lie on a plane.

Ex. 6. Are the points (4, 1, 2) and (2, 3, - 1) on the same or on opposite ^
sides of the plane 5x-7y-Qz +3 = 0?

Ex. 7. Shew that the two points (1, - 1, 3) and (3, 3, 3) are equidistant ^
from the plane 5x + 2y-7z + 9 = 0, and on opposite sides of it.

Ex. 8. Find the equations of the planes which bisect the angles between

the planes Ax + By + Cz +D = 0, and A'x + B'y + C'z + D'=0. '

Ax + By + Cz +D _ A'x + B'y+C'z +D
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Ex. 9. The locus of a point, whose distances from two given planes are /*

in a constant ratio, is a plane.

Ex. 10. The locus of a point, which moves so that the sum of its distances

from any number of fixed planes is constant, is a plane.

21. The co-ordinates of any point on the line of intersection

of two planes will satisfy the equation of each of the planes.

Hence any two equations of the first degree represent a

straight line. We can find the equations of a straight line in

their simplest form in the following manner.

Let PQ be the straight line, ^^^ its projection on the plane

XOY by lines parallel to OZ. Then the co-ordinates w and y
of any point in PQ are the same as the co-ordinates x and y
of its projection in^q.

Hence if Ix + my = 1 be the equation of pq, the co-ordi-

nates of any point on PQ will satisfy the equation

Ix + my = 1.

Similarly, if the equation of the projection of PQ on the

plane YOZhe ny +pz=l, the co-ordinates of any point on

PQ will satisfy the equation ny+pz = 1. Hence the equations

of the line may be written

lx + my = l, ny+pz— 1,

It should be noticed that the equations of a straight line

contain four independent constants.

The above equations are unsymmetrical and are not so

useful as another form of the equations which we preceed to

find.
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22. Let (a, y5, 7) be any point A on a straight line, and
(x, y, z) any other point P on the hne, at a distance r from

{p, /&, 7) ; and let I, m, n be the direction-cosines of the line.

a X

Draw through A and P planes parallel to the co-ordinate

planes so as to make a parallelepiped, and let AL, LM, MP
be edges of this parallelopiped parallel to the axes of x, y, z

respectively. Then AL is the projection of AP on the axis

of a?; therefore

X— 0L = Ir, or —i— = r.
I

We have similarly

= r, and = ?'.

Q7i n

Hence the equations of the line are

I m n
'

Ex. 1. To find in a symmetrical form the equations of the line of inter-

section of the planes 5x-Ay = l, Sy-5z = 2.
^

x-^ y_ z+ "

5^The equations may be written Hence the direction-
4 5 3

cosines are proportional to 4, 5, 3. The actual values of the direction-

cosines are therefore f \/2> 2'n/2, i'W2.

Ex. 2. Find in a sjTnmetrical form the equation of the line x-2y=5, ^
Sx+y-7z=0. Am. ^{x-5)=y=z-if,

Ex. 3. Find the direction-cosines of the line whose equations are12 3
x + y-z + l:=0, 4jc-i-y-2z + 2=0. Ans. 771^ * TnJ* T/u '

Ex. 4. Write down the equation of the straight line through the point ^

(2, 3, 4) which is equally inclined to the axes. Ans. a;-2=:?/-3 = 5-4.
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23. To find the equations of a straight line through two

given ])oints.

Let the co-ordinates of the two given points AB be

a\, y^, z^ and x^, y<i,z^\ and let the co-ordinates of any point P
on the line ABhQ x, y, z. Then the ratio of the projections

of ^IPand AB on any axis is equal to AP : AB. Hence
the equations of the line are

^2 ^1 2/2 Vx ^2 ^\

2-i. To find the angle between two straight lines whose

direction- cosines are given.

Let I, m, n and l\ m, n be the direction-cosines of the

two lines, and let Q be the ande between them.

Let i^Q be any two points on the first line.

Draw planes through P, Q parallel to the co-ordinate

planes, and let PZ, LM, MQ be edges of the parallelopiped

so formed. Then the projection of PQ on the second line is

equal to the sum of the projections of PL, LM, and MQ on
that line.

Z ^/-^
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therefore cos 6= W -{• mm + nn\

If the lines are at right angles we have

W + mm' + nn' = 0.

If L, M, N are proportional to the direction-cosines of a
line, the actual direction-cosines will be

L M jsr _

Hence the angle between two lines whose direction-cosines

are proportional to Z, M, N and L', M', N' respectively is

_j LU -F MM' + NN'
^^^

V {U + M' + ]S-') V {L" + M" + IS")

'

The condition of perpendicularity is as before

LL' + MM' + NN' = 0.

Ex. 1. Shew that the lines - = ^ = - and - = -^ = - are at right angles.

Ex. 2. Shew that the line 4x=Sy= -z is perpendicular to the line i

3x= -y= -^z.

Ex. 3. Find the angle hetween the lines ~ = ^ = - and - = —-.=-=• v° 1 1 o -4 o

Ans. cos~1tV-

Ex.4. Shew that the lines Sx + 2ij + z-5 = = x + y -2z-S, and ,

8x-4:i/-Az= = 7x + lOy - 8z are at right angles.

Ex. 5. Find the acute angle between the lines whose direction-cosines are ^

V? l,V3and^ i, -^. Ans. 600.
4 ' 4

' 2 4 ' 4 ' 2 •

Ex. 6. Shew that the straight lines whose direction-cosines are given by y

the equations 2l + 2m-n= 0, and mn + nl + lm= are at right angles.

Eliminating I, we have 2mn- (m + n) {2m-n) = 0, or 2m^-mn-n^ = 0.

Hence, if the direction-cosines of the two lines be l^, m^, tij and l^, W2, Wo, we
«w vn 7 7

have-^^=-i. Similarly -^-^= -i. Hence the condition Ij^l^ + m^m^

+ n^n2= 0i3 satisfied.

Ex. 7. Find the angle between the two lines whose direction-cosines are /
given by the equations l +m + n= 0, P + m'^-rV^ = 0. Am. 60*^.

Ex. 8. Find the equations of the straight lines which bisect the angles

between the hues - = ^ = - , and - = -^ = -

.

I m n V m n
Let P, Q be two points, one on each line, such that OP— OQ=r. Then

the co-ordinates of P are Ir, mr, nr, and of Q are I'r, m'r, n'r; hence the co-

ordinates of the middle point of PQ are ^ (Z -t- V) r,\{m-\- m') r, i (?i + n') r. Since

S. S. G. 2
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the middle point is on the bisector, the required equations are

— Similarly the equations of the bisector of the
l-\-l' m + m' n + n'.

supplementary angle are ^4^,
=^, =^,

.

25. By the preceding Article

cos 6 = ir + rum! + nn
;

therefore sin'* 6 = 1 — {IV +mm + nnY

— {W + mm + nny
;

therefore sin ^ = V {
(^^' — '^'w)^ + {nV — n'lf + (Im' — Imf].

20. To find the angle between two planes wJiose equations

are given.

The angle between two planes is clearly equal to the

angle between two lines perpendicular to them. Now we
have seen [Art. 14] that the direction-cosines of the normal
to the plane

Ax-hBy+Cz + D = 0,

are proportional to ^, ^, C. Hence by Article 24 the angle

between the planes whose equations are

Aa) + By+ Cz +D = 0,

A'a) + B'y+az + D'=0,

_i AA'-^BB'+GC
IS cos

V {A' + 5^ + C) V {A'^+ F^ + C")

'

Ex. 1. Find the equation of the plane containing the line x + y + z = l,

2x + 3y + 4LZ = 5, and perpendicular to the plane x-y + z = 0.

Ans. x-z + 2= 0.

Ex. 2. At what angle do the planes x + y + z= i, x-2y-z= 4: cut ? Is the
origin in the acute angle or in the obtuse? Is the point (1,-3, 1) in the
acute angle or in the obtuse ? Ans. cos~^^iy2, acute, obtuse.

Ex. 3. Find the equation of the plane through (1, 4, 3) perpendicular
to the line of intersection of the planes 3a; + 4?/ + 72 + 4= 0, and x-y + 2z + 3= 0;
also of the plane through (3, 1, - 1) perpendicular to the line of intersection

of the planes Sx + y -z= 0, 5x-3y + 2z=0.
Ans, 15x + y-'7z + 2= 0. Ans. x+lly+ 14js= 0.

cc *u z
Ex. 4. Shew that the line -= — = - is parallel to the plane

Ix + my +nz+p = if IX + m/uL + ny =0, the axes being rectangular or oblique.



THE STRAIGHT LINE. 19

27. To find the perpendicular distance of a given point

from a given straight line.

Let the equations of the line be

X— a _y — ^ _^ — 7
I m n

Z

a

Let
( f, g, h) be the given point P, and let PQ be the per-

pendicular from P on the line.

Let A be the point (a, /5, 7), and draw through A and P
planes parallel to the co-ordinate planes so as to form a
parallelopiped of which AL, LM, MP are edges parallel to

the axes.

Then AQ is the projection of AP on the given line, and
is equal to the sum of the projections of AL, LM, and MP;
therefore AQ = (/— a) l + (g - ^) m + {h—ry)n.

Hence PQ' = AP' -AQ'

28. To find the condition that two lines may intersect.

Let the equations of the lines be

x — a y — P z —7
and

X — OL y-fi' _z-r{
I 7n n L m n

If the lines intersect they will lie on a plane ; and, since

the plane passes through (a, /3, 7), we may take for its

equation

\{x-(x)+fjL(j/-^) + v(z-j) = Q .(i).

2—2
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The point (a', ^, y) is on the plane, hence we have

X(oi'-a)-hfM(fi'-^) + v(y'-y) = .(ii).

Also, since the normal to the plane is perpendicular to

both lines, we have
\l + fim +vn =0 (iii),

and \V + fim' + vn' = (iv).

Eliminating X, /j,, v from the equations (ii), (iii) and (iv)

we have the required condition, namely

a - a, ^' - /?, 7' - 7
I

J
m , n

m n

= 0.

If this condition be satisfied, by eliminating X, /x, v from
(i), (iv), (iii), we find for the equation of the plane through the

straight lines

m n

n

= 0.x-a,y-ff,z-y
I,

I',

If the equations of the lines be a^x + h^y \-c^z 4- c^^ = 0,

a^x + h^y 4- c^z + d^ = 0, and a^x + h^y + c^z + d^ = 0, a^x + h^
+ c^z + 5^ = 0, the condition of intersection of the lines is the

condition that the four planes may have a common point,

which is found at once by eliminating x, y, z.

29. To find the shortest distance between two straight

lines whose equations are given.

Let AKB and CLD be the given straight lines, and let

KL be a line which is perpendicular to both. Then KL is

the shortest distance between the given lines, for it is the

projection of the line joining any other two points on the
given lines \

Let the equations of the given lines be

x — a_y — h z — c ^^^ x — a_y — h' z — c'

I

andm n V m n
^ We can find KL by the following construction :—draw AE through A

parallel to CD ; let AP be perpendicular to the plane EAB, and let the

plane PAB cut CD in L ; then if LK be drawn parallel to PA it will be the

line required.
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Let the equations of the line on which the shortest

distance lies be

x — OL_y — ^_z^'y

Since the line (i) meets the given lines, we have [Art. 28]

=

and =

(i).

^rt

.(ii),

(iii).

a — a, /3 — 5, 7 —

c

I y m , n

\
,

/Jb , V

a — a, B — b\ 7 — c'

7/ r I

L
J

m , n

X , ^l y V

Since (i) is perpendicular to the given lines, we have

\l -\- jim +vn =0,
and \l' + fjLm + vn = ;

therefore
7nn —run nl' — n'l Im! — I'm'

Hence, from (ii) and (iii), we see that (a, y3, 7), which is

an arbitrary point on the shortest distance, is on the two

planes

X — a, y — hy z — c 1
= 0,

I y
m

,

n

ran — m'n, nX — rily Im' — I'm

and X — a'y y — b'i z — c'

I
,

m ,
n

mn — m'riy nl' — n'l, Im' — I'm

= 0.

These planes therefore intersect in the line on which the

shortest distance lies.

We can find the length of the shortest distance from the

fact that it is the projection of the line joining the points

(a, b, c) and (a , h' , c). Now the projection of this line on the

line whose direction-cosines are \, /a, v is

(a — a)\-\-(h — h') fi-\-(c- c) v.
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But as above
\ fl V

mn — m'n nl' — n'l Im! — I'm
'

therefore each fraction is equal to

1

^{{mn' - mnf + (nl' - nlf + {Im' - Imf]

'

Hence the length of the shortest distance is

(g — a') [mn — mn) + (6 — l>){nl' — n'l) + (c — c){lm' — Tm)

^J[{mn — m'nf + {nV — n'Tf + {Im — VmY]

Ex. 1. Find the perpendicular distance of an angular point of a cube
from a diagonal which does not pass through that angular point.

Ans. «\/i
Ex. 2. How far is the point (4, 1, 1) from the line of intersection of

/27
x + y-\-z=A, x-2y-z=4L'> Ans. a/tt-

Ex. 3. Shew that the two lines a; - 2 = 2?/ - 6 = 3^, 4x - 11 = 4?/ - 13 = 3z
meet in a point, and that the equation of the plane on which they lie ia

2x-6?/ + 3^ + 14 = 0.

Ex. 4. Find the equation of the plane through the point (a', ^', 7'), and

through the line whose equations are—r— = —= .

I m n
x-a,y-p, z-y

Ans. a'-a, /3'-^, 7'-7 =0.
i , TO , n

Ex. 5. The shortest distances between the diagonal of a rectangular
parallelopiped and the edges which it does not meet are

he ca ah

where a,b,c are the lengths of the edges.

Ex. 6. Find the shortest distance between the straight lines

|(cc-l)=4(y-2)=2-3, aiB.dy-mx=z=0.
5m - 10

Ans.
V(5w2-16m + 17)'

Ex. 7. Determine the length of the shortest distance between the lines
4x=Sy=-z and 3(ic-l)=-?/-2=-4^ + 2. Find the equations of the
straight line of which the shortest distance forms a part. An^. ^^.

30. If through any number of points, P,Q, R... lines be
drawn either all through a fixed point, or all parallel to a
fixed lii;^; and if these lines cut a fixed plane in the points
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P', Q\R'...; then P', Q\ R'... are called the projections of

P, Q, R... on the plane. If the lines PP', QQ', RR'... are

all perpendicular to the fixed plane, the projection is said to

be orthogonal.

The orthogonal projection of a limited straight line on a

plane is the line joining the projections of its extreniities.

It is easily seen that the projection of a line on a plane

is equal to its length multiplied by the cosine of the angle

between the line and the plane.

31. The orthogonal projection of any plane area on

any other plane is found by multiplying tJie area by the

cosine of the angle between the planes.

Divide the given area into a very great number of

rectangles by two sets of lines parallel and perpendicular to

the line of intersection of the given plane and the plane of

projection. Then, those lines which are parallel to the line

of intersection are unaltered by projection, and those which
are perpendicular are diminished in the ratio 1 : cos 6, where

6 is the angle between the planes. Hence every rectangle,

and therefore the sum of any number of rectangles, is

diminished by projection in the ratio of 1 : cos^. But,

when each of the rectangles is made indefinitely small, their

sum is equal to the given area. Hence any area is diminished

by projection in the ratio 1 : cos 6.

32. If we have more than one plane area, we must
make some convention as to the sign of the projection,

and we have the following definition : the algebraic pro-

jection of any face of a polyhedron on a fixed plane is

found by multiplying its area by the cosine of the angle

between the normal to the fixed plane and the normal

to the face, the normals to the faces being all drawn outwards

or all drawn inwards.

33. Let A be the area of any plane surface ; I, m, n the

direction-cosines of the normal to the plane ; A^, A^, A^ the

projections of A on the co-ordinate planes. Then we have

A^ = l.A, A^^m.A, J^ = n.A.
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Hence, since P + m^ + n^ = 1,

we have A,' + A^ + A,' = A\

Also the projection of A on any other plane, the direction-

cosines of whose normals are l\ m, n, is ^ cos ^ ; and we
have

A cos 6 = (W + mrn + nn) A
= rA^ + mA^-\-nA^.

Hence to find the projection of any plane area, or of the

sum of any plane areas, on any given plane, we may first

find the projections A^, Ay, A^ on the co-ordinate planes,

and then take the sum of the projections of A^y A^, A^ on

the given plane.

84. To find the volume of a tetrahedron in terms of the

co-ordinates of its angular points.

Let the co-ordinates of the angular points of the tetra-

hedron ABCD be {x^, y^, z,), (^^ y,, ^2), (5, 3/3' ^zl ^^^ (^4^ V^^^a)'

The volume of a tetrahedron is one-third the area of the base

multiplied by the height. Now the equation of the face BCD is

2

'

oc„

= 0.y y
Z y

2/2 » ^2 »

The perpendicular p from A on this is found by sub-

stituting the co-ordinates of A and dividing by the square

root of the sum of the squares of the coefficients of x, y,

and z.

Now the coefficients of x, y, z are

2/2' ^2' 1
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Therefore 2p.ABCD= x^, y^, z^, 1

^3 ' 2/3 » -^2 ' '

therefore volume of tetrahedron

1~ 6 ^1'
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36. Four given planes which have a common line of
intersection cut any straight line in a range of constant cross

ratio.

Let any two lines meet the planes in the points

P, Q, R, S and P\ Q\ R, S' respectively. Let 0, 0' be
any two points on the line of intersection of the given planes,

and let the line of intersection of the two planes OFQRS,
O'P'Q'ES' meet the four given planes m F\ Q", R\ B" respec-

tively. Then, from the pencil whose vertex is 0, we have
[P QBS} = {P"Q"R"S"]\ and, from the pencil whose vertex is 0',

we have [F
'

Q"R"S"]=[F Q'R'S']. Hence [P QRS\ = [P'Q'R'S'},

which proves the proposition.

37. Def. Two systems of planes, each of which has

a common line of intersection, are said to be homographic
when every four constituents of the one, and the correspond-

ing four constituents of the other, have equal cross ratios.

An equivalent definition [see Conies, Art. 323] is the

following:—two systems of planes, each of which has a
common line of intersection, are said to be homographic
which are so connected that to each plane of the one system
^.orresponds one plane, and only one, of the other.

Oblique Axes.

38. Some of the preceding investigations apply equally

whether the axes are rectangular or oblique. These may be

easily recognised. We proceed to consider some cases in

which the formulae for oblique and rectangular axes are

different.

39. Let P, Q be two points on a straight line, and
through P, Q draw planes parallel to the co-ordinate planes

so as to form a parallelepiped, and let PL, LK, KQ be

edges parallel to the axes. Then the ratios of PL, LK, KQ
to PQ are called the direction-ratios of the line PQ. It is

clear that the direction of a line is determined by its

direction-ratios.
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40. To find the angles a line makes luith the axes of
co-ordinates, in terms of its direction-ratios.

Let \, fjb, V be the angles YOZ, ZOX, XOY respectively.

Let I, m, n be the direction-ratios of the line PQ, and let

a, yS, 7 be the angles it makes with the axes. Let PZ, XiT,

KQ be parallel to the axes so that PL = I. PQ, LK = m . PQ,
KQ = n.PQ, as in Art. 39. Then, since the projection of

P^ on the axis of x is equal to the projection of PLKQ,
we have

PQ cos a = PL + LKcos v 4- KQ cos /x

;

therefore cos a =l + m cos v + n cos fjb.

Similarly cosyQ = ?cos^' + m + ncosX,

and cos <y = 1 cos /x + w cos X + n.

41. To find the relation heticeen the direction-ratios of a

line.

Project PL, LK, KQ on PQ, then we have

PL cos a + Z/i cos /3 + iTQ cos 7 = P$

;

therefore from Art. 40,

l{l-\- m cos V -\-n cos yu,) + m {I cos p-\-m + n cos \)

-f n (Z cos /jb-^-m cos X + n) = 1

or Z** + m'' + n^ + 2mn cos X -f 2?iZ cos /x + 2Z??i cos v=l. . .(i),

which is the required relation.



28 OBLIQUE AXES.

Let the co-ordinates of tlie points P, Q be

^1' I/v ^1 ^^^ ^2' 2/2' ^2-

Then l.PQ^PL = x^-x^, m. PQ = LK=^y^-y^,

and n. P Q= KQ = z^ — z^.

Hence from (i) we have

PQ' = [x, - xf+ (y, - y,y + (^, - ^,)^ + 2 (y, - yj (^,-r,)cos \

+ 2 (2^2 - ^J (^2 - ^1) cos /A + 2 {x^ ~ a;J (2/^
-

?/J
cos 1/ (ii),

• which gives the distance between two points in terms of their

oblique co-ordinates.

42. To find the angle between two lines whose direction-

ratios are given.

Let I, m, n and Z', m\ n be the direction-ratios of the

lines PQ and PQ' , and let 6 be the angle between them.

Let PL, LKy KQ be parallel to the axes, so that

PL = l.PQ, LK=m.PQ, s^nd KQ = n.PQ.

Project PQ and PLKQ on the line P'Q'; then

PQ cos6 = 1 PQ . cosa +mPQ .cos ^' + nPQ. cos 7',

where a', /8', 7 are the angles the line P'Q' makes with the
axes. Hence, from Art. 40, we have

cos 0=1 (l' + m' cos V -\- n' cos ^i)

4- m {V cos v-\-m +n cos X)

-}- n (If cos jj, -{-m cos X -f ?i')

= Zr + mm + nn + (mn + m'n) cos \+ {nl -\- n'T) cos ^
+ (Zm' -f Im) cos i/.

43. To find the volume of a tetrahedron in terms of three

edges which meet in a point and of the angles they make with

one another.

Take the axes along the three edges, and let a, h, c

be the lengths of the edges, and X, /x, v the angles they make
with one another. Then

Volume = J abc sin v cos 6,
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where 6 is the angle between OZ and the normal to the
plane XOr.

Let the direction-ratios of the normal to the plane XOY
be I, m, n. Then from Art. 40 we have

I -\-m cos V +n cos /^ = 0,

I cos v + m + n cos X = 0,

I cos fjb-{- m cos \-\-n = cos 0.

Multiply by I, m, n and add, then, from (i) Art 41,

71 cos ^ = 1.

The elimination of I, m, n from the above equations gives

1

,

cos V
,

cos //- , = ;

cos V

,

1
,

cos \ ,

cos fi ,
cos \

,

1 , cos 6

0, 0, cos^, 1

therefore sin'^ v cos'' 6 = 1 , cos i/ , cos fi

cos V , 1 , cos X

cos /i, , cos X , 1

= 1 — cos' X — COS^ yu, — cos'' 1^ + 2 cos X cos /A COS V.

Hence the volume required

= ^ ahc V (1 ~ cos'^ X — cos'^ /a — cos'^ j/ + 2 cos X cos /x cos i/).

TRANSFOR^LA.TION OF CO-ORDINATES.

44. To change the origin of co-ordinates without changing

the direction of the axes.

Let f,g, k be the co-ordinates of the new origin referred

to the original axes. Let P be any point whose co-ordinates

referred to the original axes are x, y, z, and referred to the

new axes x
, y\ z. Let PL be parallel to the a5:is of x and

let it meet 70Z in X, and TOZ in L',
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Then

therefore

Similarly

and

x —x= LL' =f.

y-y'=9>
z —z=h.

Hence, if in the equation of any surface we write x +/,
y+g, z + h for X, y, z respectively, we obtain the equation

referred to the point (/, g, h) as origin.

45. To change the direction of the axes without changing
the origin, both systems being rectangular.

Let Zj, m^, n^; l^, m^, n^; and l^ m^, n^ be the direction-

cosines of the new axes referred to the old.

JC'

Let P be any point whose co-ordinates in the two systems

are x, y, z and x
,
y' , z .

Draw PL perpendicular to the plane X! OY' and LM per-

pendicular to OX' \ then OM = x, ML = y', and LP=z',

Since the projection of OP on OX is equal to the sum of

the projections of OM, ML and XP, we have

x=^l^x -\-l^y' + l^z\

Similarly y = m^x +m^y + m, z,

and z^n^x + n^y +n^z^.
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These are the formulae required.

Since l^, m^, n^^ ; 7^, m^, n^; and ^3, wig, % are direction-cosines,

we have

// + m; +< = l

C +< +< = !

Also, since 0X\ OY', OZ' are two and two at right

angles, we have

and Z^Zg + mjin^ -{ nji^ =

The six relations between the nine direction-cosines which
we have found above are equivalent to the following

:

V + h' + 1: = 1.

< + ^2' + "3' = 1.

»"i^i + '"2^ + ^3^3 = 0,

)

Z,??i, -f l^m^ + ^37^3 = 0,

This follows at once from the fact that l^, l^, l^;

in^, m^, m^\ and n^, n^, n^ are the direction-cosines of

OX, OY, OZ referred to the rectangular axes 0X\ OY', OZ',

46. Since

\
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K^
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extremities of the line in any one of its possible positions be x^, t/j, z^ and
^2> 2/25 ^2 ; ^^^ Ist {x, y, z) be the co-ordinates of the middle point of the line.

Then, if 21 be the length of the line, we have

But, since y^=mx-^ and Zy=Cf and y<^— -mx^, Z2= -c, we have

yi-y2=mK + x^) = 2mx,

Zj^-z.2= 2c, and 2z = z-^ + Z2— 0.

Hence the locus of the middle point is the ellipse v;hose equations are

2 = 0, l^= K, + m'x^ + cK

(2) A line moves so as always to intersect three given straight lines,

which are not all parallel to the same plane; find the equation of the

surface generated by the straight line.

Draw through each of the lines planes parallel to the other two ; a
parallelepiped is thus formed of which the given lines are edges. Take the
centre of the parallelepiped for origin, and axes parallel to the edges, then
the equations of the given lines are y = hi z= -c; z= c, x^ -a; and x= a,

y= -b respectively.

Let the equations of the moving line be

x-a
__ y -§ _z -y

I m n '

Since this meets each of the given lines we have

b - ^ _ -c-y c-y _ —a-a ^ a- a _ -b- ^— •
, —— , and —;— = .m n n I I m

Hence, by multipljnng corresponding members of the three equations, we
see that (a, /3, 7), an arbitrary point on the moving line, is on the surface

whose equation is

(a-x){b-ij) {c-z) + {a + x){b + y) {c + z)= 0,

yz zx xy ^ .

be ca ab

(3) The lines of intersection of corresponding planes of two homographic
systems describe a surface of the second degree.

We may take y—mx, z= c, and y= -mx, z= -c for the equations of the
lines of intersection of the two systems of planes [see Art. 35.]

Let the equations of corresponding planes of the two systems be

y-mx + \(z-c)=0,
and y +mx + \'{z + c)=0.

Since the systems are homographic there is one value of V for every value of

X, and one value of X for every value of X'; hence X, X' must be connected by
a relation of the form

X\' + A\-i-BX + C=0.
S. S. G. 3



34 EXAMPLES ON CHAPTER 11.

Substitute for \ and \', and we have

y^-vi^x^-A (z + c) {y-vix)-B {z-c) {y + mx) + C {z^~c-) = 0.

Hence the line of intersection of corresponding planes describes a surface of

the second degree.

ExAMPLijs ON Chapter II.

1. If P be a fixed poirt on a straight line througli the origin

equally inclined to the three axes of co-ordinates, any plane

through P will intercept lengths on the co-ordinate axes the sum of

whose reciprocals is constant.

2. Shew that the six planes, each passing through one edge

of a tetrahedron and bisecting the opposite edge, meet in a point,

3. Through the middle point of every edge of a tetrahedron

a plane is drawn perpendicular to the opposite edge ; shew that

the six planes so drawn will meet in a point.

4. The equation of the plane through - = -^ = - and which
I 'til ;J¥t

CC 1/ ^ 00 7J i^

is perpendicular to the plane containing? — = - = - and - = ^ = —

,

^ ^ 0)1 Ql C 71 C 111

is X (m — n) + y{n — l)-\-z{l- m) = 0.

5. Shew that the straight lines

X y z X y z

a (3 y' aa bjS cy^
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7. Determine tlie locus of a point which moves so as always \/
to be equally distant from two given straight lines.

8. Through two straight lines given in space two planes are

drawn at ri^ht ansjles to one another ; find the locus of their line

of intersection.

9. A line of constant length has its extremities on two given

straight lines ; find the equation of the surface generated by it,

and shew that any point in the line describes an ellipse.

10. Shew that the two straight lines represented by the

equations ax -\-hy -t cz = 0, yz -{ zx + xy = will be perpendicular if v

- + T + -==0.
a c

11. Find the plane on which the area of the projection of the

hexagon, formed by six edges of a cube which do not meet a given

diagonal, is a maximum.

12. Prove that the four planes .

r
my + nz = 0, nz + fe = 0, lx + my = 0, lx-{- my + 7iz =p,

form a tetrahedron whose volume is -^— .

oimn

13. Find the surface generated by a straight line which is

parallel to a fixed plane and meets two given straight lines.

'14. A straight line meets two given straight lines and makes

the same angle with both of them; find the surface which it

generates.

15. Any two finite straight lines are di\Hded in the same

ratio by a straight line ; find the equation of the surface which it

generates.

16. A straight line always parallel to the plane of yz passes

through the curves x^ + y^ = a^, z^O, and cc^ = a;s, 2/ = ; prove

that the equation of the surface generated is

xy = {x'-azY{a^-x%

17. Three straight lines mutually at right angles meet in a

point P, and two of them intersect the axes of x and y respec-

tively, while the third passes through a fixed point (0, 0, c) on the

axis of z. Shew that the equation of the locus of P is
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1 8. Find the surface generated by a straight line which meets

y = mx, z = c; y = — mx, z = -c ; and y^ + z^z=i c^, x — 0.

19. P, P are points on two fixed non-intersecting straight

lines AB, A'B' such that the rectangle AP, A'P' is constant. Find

the surface generated by the line PP'.

20. Find the condition that

ax~ + hy^ + cz" + 2a yz + Ih'zx + 2c xy —

may represent a pair of planes ; and supposing it satisfied, if B be

the angle between the planes, prove that

tan 6 =
2ja'~ + 5"* + c'" — be — ca — ab

a + b + c

21. Find the volume of the tetrahedron formed by planes

whose equations are y + z = 0, z + x = 0, x + y-0, and x + y + z=l.

22. Find the volume of a tetrahedron, having given the

equations of its plane faces.

23. Shew that the sum of the projections of the faces of a

closed polyhedron on any plane is zero.

24. Find the co-ordinates of the centre of the sphere in-

scribed in the tetrahedron formed by the planes whose equations

are x = 0, y = 0, z=0 and x + y + z = I.

25. Find the co-ordinates of the centre of the sphere in-

scribed in the tetrahedron formed by the planes whose equations

are y + z=0, z + x-0, x + y = 0, and x + y + z = a.



CHAPTER III.

Surfaces of the Second Degree.

50. The most general equation of the second degree, viz.

-^ao^ 4- hif + C2;'' + ^fijz + 2^^.r + "ihxy {-2ux-^2vy + 2w2 + d = 0,

contains ten constants. But, since we may multiply or divide

the equation by any constant quantity without altering the

relation between x, y, and z which it indicates, there are

really only nine constants which are fixed for any particular

surface, viz. the nine ratios of the ten constants a, h, c, &c. to

one another. A surface of the second degree can therefore

be made to satisfy nine conditions and no more. The nine

conditions which a surface of the second degree can satisfy

must be such that each gives rise to one relation among the

constants, as, for instance, the condition of passing through a

given point. Such conditions as give two or more relations

between the constants must be reckoned as two or more of

the nine.

We shall throughout the present chapter assume that the

equation of the second degree is of the above form, unless it

is otherwise expressed. The left-hand side of the equation

will be sometimes denoted by F{x, y, z).

-^ 51. To find the points where a given straight line cuts

the surface represented by the general equation of the second

degree.
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Let the equations of the straight line be

I m n
'

To find the points common to this line and the surface,

we have the equation

a (a + IrY + h{^-r mrY + c (7 + nry + 2/ (/S + mr) (7 + nr)

+ 2^ (7 + nr)(a + Ir) + 2/t (a + lr){^ + wr) + 2i^ (a + Zr)

+ 2z; (/3 + mr) + 2w; (7 +wr) + cZ = 0,

or

?'^ (aZ^+ 6m^+ cn^-T 2fmn + 2/7?z?4- 27<Z??i) -\-r\l-^-\-m ;7o+^1~

+ i^(«,/3,7) = (i).

Since this is a quadratic equation, any straight line meets
the surface in two points.

Hence all straight lines which lie in any particular plane

meet the surface in two points. So that, all plane sections of
a surface of the second degree are conies.

In what follows surfaces of the second degree will

generally be called conicoids.

—^ 52. To find the equation of the tangent plane at any
point of a conicoid.

If (a, (3, 7) be a point on F{x, y, -2') = 0, one root of

the equation found in the preceding Article will be zero.

Two roots will be zero if I, m, n satisfy the relation

,dF dF dF ^
^^+^5^+^57=^ w.

The line —-,— = -—— = ~ will in that case be a
I 7)1 n

tangent line to the surface, the point of contact being (a, yS, 7).

If we eliminate I, m, n between the equations of the line,

and the equation (i), we see that all the tangent lines lie in

the plane whose equation is

, . dF , _. dF , . dF _ ....(.-a)^ + (y-^)^ + (.-T,)^= 0....(u).
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This plane is called the tangent plane at the point (a, jB, 7).

If we write the equation (ii) in full, we obtain

X {ai +'hp + gy-\-n)+y {hoL 4- b/3 + fy + v) + z {gx +fl3-\-cy+w)

. = aa' + h/S^ + C7^ + y/3y -f 2^7X + 2/ia/3 + wa + z;/3 + wj.

Add itoc + v/3 + ivy + c? to both sides, then the right side

becomes F(o^, (3, y), which is zero; we therefore have for the
equation of the tangent plane at (a, ^, y)

X (aa. + h^+gy + u) + y (hx + h/3+/y+v)+z(g2 +fl3 + cy + lu)

+ ua + vl3 + wy-hd = 0. . .(iii).

Ex. 1. Fine! the equation of the tangent plane at the point {x', y', z') on
the surface ax^ + by'^ + cz'^ + d= 0. Ans. ax'x + h])'y + cz'z+ d= 0.

Ex. 2. Find the equation of the tangent plane at the point {x', y', z') on
the surface ax'^-\-by^ + 2z = 0. Ans. ax'x + hy'y + z + z'= 0.

^ 53. The condition that the tangent plane at (a, /S, 7)
may pass through a particular point (cc', y\ z) is

X (ax + h/3 + gy+u)+y' {hx+h/3+fy+v)+z' (goL+f^+cy+w)
+ ux -t v/3 + wy + d = 0.

This condition is equivalent to

a{ax +hy +g2'+u) -\-/3 {hx' -\-by' +fi'+v) +y(gx +fy +c/+w)
+ ux + vy + wz + cZ = 0.

From the last equation we see that all the points, the

tangent planes at which pass through the particular point

{x
^ y\ /), lie on a plane, namely on the plane whose equation

is

X (ax + hy' + gz \-u)+y {hx + hy -Vfz + v)

+ z {gx \-fy + cz + ^^) + ux + vy* + wz' + cZ = 0.

This plane is called the 'polar plane of the point {x
,
y\ z).

The polar plane of any point P cuts the surface in a conic,

and the line joining P to any point on this conic is a tangent

line. The assemblage of such lines forms a cone, which is

called the tangent cone from P to the conicoid.

The equation of the polar plane of the origin, found by
putting x =y' = z =0 in the above, is

ux-\-vy \-wz-\-d = 0.
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~^=:5r 54.
i
The condition that the polar plane of {x\ y , z) may

pass through (a, yS, 7) is as above

a {ax + liy +gz+u)+fi {hx + ^'i/' +fz + ?;)

+ 7 {9^' -^fy' + ^•^^ + '^^) + ^^' + ^i/' + '^^•2' + d = 0.

This equation is unaltered if we interchange a and x\

^ and ?/', and 7 and s' ; it therefore follows that if the polar

plane of any point P with respect to a conicoid pass through
a point Q, then will the polar plane of Q pass through P.

—^ 55. Let R be any point on the line of intersection of the

polar planes of P, Q.

Then, since R is on the polar plane of P and also on the

polar plane of Q, the polar plane of R will pass through P
and through Q, and therefore through the line PQ. Similarly

the polar plane of >S^, any other point on the line of inter-

section, will pass through the line PQ.
Two lines which are such that the polar plane with

respect to a conicoid of any point on the one passes through
the other, are called polar lines, or conjugate lines.

56. If any chord ofa conicoid he draivn through a point

it ivill be cut harmonically by the surface and the polar
plane of 0.

Take the point for origin, and let the surface be given

by the general equation of the second degree.

Let the equations of any line, which cuts the surface in

P, Q and the polar plane of in P, be

ic _ 2/ _z

_

I VI n

To find the points where the line cuts the surface we have,

as in Art. 51, the quadratic equation

r^ {ar + bni^ + cn^ + 2/??m + 2gnl + 2hlm)

+ 2r (ul + vm + wn) -\- d=^0.

Hence tttt + ttts =—-.(ul + vm^ wn).
OP OQ d^

The equation of the polar plane of is

ux + vy + wz + d = 0.
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Hence
11/7 N

TTr = ~ ^ (^^ + ^^^ + ^^) »

therefore

which proves the proposition

J. 1^
OR'

'

57. To find the condition that a given plane may touch

a conicoid.

Let the equation of the given plane be

Ix + my + nz +p = (i).

The tangent plane at (x, y, z) is

X (ax + %' + g/ + u) -{- y (hx + by +fz + v)

+ z {gx +fy + cz + w) + ux' + vy + wz + cZ = (ii).

If the planes represented by (i) and (ii) are the same we
have
ax 4- hy + gz -\-u _ hx + hy +fz' -\- v _ gx -\-fy + cz + to

I m n

_ ux + vy' + wz' + cl

Put each fraction equal to — X ; then we have

ax + hy +gz -\-u-\-X I =0,
hx + hy' \-fz + V + X, m = 0,

gx \-fy' -^-cz \-w-\-\ n = 0,

ux + vy -\-wz'+ d+ \p = 0.

Also, since [x\ y\ z) is on the given plane,

Ix + my •{• nz^ -h p = 0.

Eliminating x, y , z\ X, we obtain the required condition,

namely

a, h
, g , u, Z = 0.

h,
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The determinant when expanded is

AP + Bm' + Ca' + D/ + 2 Fmn + 2 Giil + 2 i7^??i

+ 2 ZJ^p + 2V'mp + 2Wnp = 0,

Avhere A, B, C, &c. are the co-factors of a, h, c, &c. in the

determinant

a, h, g, u

g, f, c, w
u, V , lu, d

We will give special investigations in the two following

cases which are of great importance

:

I. Let the equation of the surface be

ax" + hf + cz' +d = 0.

The tangent plane at any point {x\ y\ z') is

ax'x + hi/'y + cz'z + cZ = 0.

Hence, comparing this equation with the given equation

Ix + my -\-nz+p = 0,

ax hy' cz d
we have "-'^ = — = — = - . Each fraction is equal to

I on n p
^l{ax^^r]nr±cz^±d)

^

ycabed
hence, since ax'^ + by^ + cz'^ + c? = 0,

the required condition of tangency is

abed
II. Let the equation of the surface be

a^' 4- bf + 2z = 0.

The tangent plane at any point (x, y\ z') is

axx + by'y + s + / = 0.

Hence, comparing this equation with the given equation

Ix + my + 7Z^ + 2> = 0,
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we have -7- = -^ = - = — , Each fraction is equal to
L m n p ^

1(1' m' ^ \'

hence, since ax^ + hy"^ + 2/ = 0,

the required condition of tangency is

72 2

- + -7- + 2n» = 0.
a ^

58. If we find, as in Article 51, the quadratic equation
giving the segments of a chord through {a, /S, y) the roots of

the equation will be equal and opposite, if

,dF dF dF ^

In this case (a, /3, 7) will be the middle point of the chord.

Hence an infinite number of chords of tke conicoid have the
point (a, /3, 7) for their middle point.

If we eliminate I, m, n between the equations of the

chord and (i), we see that all such chords are in the plane

whose equation is

(—«)5^ + (3/-^)^^+ (--7)^ = (n).

Hence (a, ^, 7) is the centre of the conic in which (ii) meets
the surface.

This result should be compared with that obtained in

Art. 52.

Ex, 1. The locus of the centre of all plane sections of a conicoid which
pass through a fixed point is a conicoid.

The equation of the locus is if-x)~ + {g-'y)— + {h-z)-T-=0, where

f, g, h are the co-ordinates of the fixed point.

Ex. 2. The locus of the centre of parallel sections of a conicoid is a
straight line.
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The section whose centre is (a, /3, 7) is parallel to the given plane

lx + m]/ + 7iz=0 if

dF dF dF
da dji dy

I
~ m ~ n

'

Hence the locus is the straight line whose equations are

I dx m dy n dz
'

The straight lines clearly all pass through the point of intersection of the

dF dF dF ^
planes -3- = 3- = -3-= 0.

dx dy dz

-^ 50. To find the locus of the middle points of a system of
parallel chords of a conicoid.

As in the preceding Article, (1, /9, 7) will be the middle
point of the chord whose direction-cosines are Z, m, n, if

,dF dF dF ^
l-j~+ m Ta + '^^ zr = ^'
di dp dy

Hence the locus of the middle points of all chords whose
direction-cosines are I, m, n is the plane whose equation is

,dF dF dF ^
I -^—I- m -, \- n —r- = ^«
dx dy dz

Bef. The locus of the middle points of a system of parallel

chords of a conicoid is called the diametral plane.

If the plane be perpendicular to the chords it bisects, it is

called a principal plane.

^^^ 60. To find the equations of the principal planes of a
conicoid.

The diametral plane of the chords whose direction-cosines

are I, m, n is

,dF dF dF ^

dx dy dz

or, writing the equation in full,

I (ax + hy +gz + u) + m (Jix + hy +fz + v)

-f n [gx -Vfy -\- cz \- w) — ^

,

or X {al 4- hm -f- gii) -\- y {hi -}- hm +fn) + z (gl +fm -\- en)

4- id + vm 4- wn = 0.
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If this plane be perpendicular to the chords it bisects,

we have
al + hm+gn _kl+ hm +fii _ gl +fin-\-cn

I in n

Put \ for the common value of these fractions, then

{a — \)l + hm 4- gn — 0,

+ (6 - X) m +fn = 0,hi

gl -hfm

Eliminating I, m, n we have

a — \, h,

-\-{c-X)n = 0..

= 0,

.(i).

9

f
c — X

or

h, h — X,

9^ f>

\' - (a-^-h + c)\' -h (bc + ca + ah -f - g' ~h')\
- {abc + 2fgh - af - bg' - ch') = 0.

This is a cubic equation for determining X ; and when X is

determined, any two'of the three equations (i) will give the
corresponding values of I, m, n.

Since one root of a cubic is always real, it follows that

there is always one principal plane.

Find the principal planes of the following surfaces

:

(i) x^ + y^-z'^ + 2yz + 2zx-2xy = a^.

(ii) 11x2+ 10^2 + 6^2 _ 8yz + 4zx - 12xy = 1.

A71S. (i) x + y + z = 0, x-y= 0, x +y-2z= 0.

Ans. (ii) x + 2y + 2z= 0,2x + y-2z= 0, 2x-2y + z= 0.

61. All parallel plane sections of a conicoid are similar

and similarly situated cmiics.

Change the axes of co-ordinates in such a way that the

plane of xy may be one of the system of parallel planes ; and
let the equation of the surface be the general equation of the

second degree.

Let the equation of any one of the planes be z — k. At
all points of the section of the surface F{Xj y, z) =0, by the
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plane z = h both these relations are satisfied ; we therefore

have

ax" + hif + ch" + y^jlc + 2rjkx + "Ihxy + 2ux + 2vij

^2Lv7c + d=0 (i).

Now the equation (i) represents a cylinder whose gene-

rating lines are parallel to the axis of z, and which is cut by
the plane ^ = in the curve represented by (i).

Since parallel sections of a cylinder are similar and simi-

larly situated curves, the section of the surface F (x, y, 2) =
hy z = k is similar to the conic represented by (i) and 2! = 0;

and all such conies, for different values of k, are clearly

similar and similarly situated : this proves the proposition.

Classification of Conicoids.

62. We proceed to find the nature of the different

surfaces whose equations are of the second degree ; and we will

first shew that we can always change the directions of the

axes of co-ordinates in such a way that the coefficients of yz,

zx, and xy in the transformed equation are all zero.

63. We have seen [Art. 60] that there is at least one

diametral plane which is perpendicular to the chords it

bisects.

Take this plane for the plane ^ = in a new system of co-

ordinates.

The degree of the equation of the surface will not be altered

by the transformation ; hence the equation will be of the form

ax^ + ly^ -f cz^ + 2fyz -\- 2gzx + 2]ixy + 2ux + 2vy + 2wz -\-d = 0.

By supposition the plane z = bisects all chords parallel

to the axis of z ; therefore if {x, y\ z) be any point on the

surface, the point {x, y\ — z) will also be on the surface.

From this we see at once that/= g =w = 0.

2k
Now turn the axes throuojh an ang^le J tan ^

r » theno o -i a — b

[See Conies, Art. 167] the term involving xy will disappear.
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Hence we have reduced the equation to a form in which the

terms yz, zx, and xy are all absent.

64. When the terms yz, zx, xy are all absent from the

equation of a conicoid, it follows from Art. 60 that the co-ordi-

nate planes are all parallel to principal planes. Hence by
the preceding article, there are always three principal

planes, which are two and two at right angles. This shews

that all the roots of the cubic equation found in Art. 60 are real.

For an algebraical proof of this important theorem see

Todhunter's Theory of Equations.

Q5, We have seen that the general equation of the second

degree can in all cases be reduced to the form

Ax^-\-By''-\-Cz^^2Ux-v2Vy^2Wz + D=0,

I. Let A, Bj (7 be all finite.

We can then write the equation

Hence, by a change of origin, we have

Ax' + By' + Gz'' = D\

If D' be not zero we have

x'^ t/^ ^

A B C

which we can write in the form
.2 2 2

-2 + '-k + % = ^ («X
a c

x" -^ -'

or :-+!-? =1 (^)'

*> 2 2
X- f Z ^ ( \



4S CLASSIFICATION OF CONICOIDS.

B' B' B'
according as -^ , -yr , -rf- are all positive, two positive and

one negative, or one positive and two negative. [If all three

are negative the surface is clearly imaginary.]

If B' be zero, we have

Ax^-vBxf-\-Gz^=^ (S).

II. Let (7, any one of the three coefficients A^B^ (7, be
zero.

Write the equation in the form

then, if W be not zero, the equation can, by a change of origin,

be reduced to

^ic' + %' + 2TF^ = (e).

If W be zero, we have the form

Ax^'^Bf-^B = ^ (?),

or, if B' be zero, the form

Ax^^Bf^'^ (7;).

III. Let B, G, two of the three coefficients, be zero.

"We then have

A(x + ^]+2Vy+2Wj2+B-~- = 0.

Now take 2F2/+2TF>+D—7- = ^ ^^^ ^^^® plane y=0, and

the equation reduces to the form

w' = 2ky (d).

If however V= Tr=0, the equation is equivalent to

a)' = k' (t).

66. We now proceed to consider the nature of the

surfaces whose equations are (a), (/5), (t) ; to one of which
forms we have seen that the general equation is reducible.
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The surface whose equation is

2 2 2

is called an ellipsoid.

Let a, h, c be in descending order of magnitude; then

{w, y, z) being any point on the surface, we have

2 2 _2

a^ a^ a^

and -^+^ + -H:l.
c c c

So that no point on the surface is at a distance from the

origin greater than a, or less than c. The surface is therefore

limited in every direction ; and, since all plane sections of a
conicoid are conies, it follows that all plane sections of an
ellipsoid are ellipses.

The surface is clearly symmetrical about each of the co-

ordinate planes.

If r be the leno-th of a semi-diameter whose direction-

cosines are I, m, n, we have the relation

t'
"

a^
"^

h'
'^

c''

If two of the coefficients are equal, h and c suppose,

the section by the plane x = ^, and therefore [Art. 61]

by any plane parallel to a? = 0, is a circle. Hence the

surface is that formed by the revolution of the ellipse
2 2

-^ + T9 = 1 about the axis of x.

The surface formed by the revolution of an ellipse about
its major axis is called a prolate spheroid ; that formed by
the revolution about the minor axis is called an oblate

spheroid.

li a = b = c the equation of the surface h x^ + y^ + 2^ = a^,

which from Art. 5 represents a sphere.

s. s. G. 4
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67. The surface whose equation is

a^
"^

b' e '

is called an Jnjperholoid of one sheet.

The interce^Dts on the axes of oc and y are real, and those

on the axis of z are imaginary.

The surface is clearly symmetrical about each of the co-

ordinate planes.

The sections by the planes x = and y = are hyperbolas,

and that by 2; = is an ellipse.

The section by ^ = A; is also an ellipse, the projection of

X r k'
and the section becomeswhich on z = is —, + f^ = 1 + 9 »

greater and greater as k becomes greater and greater.
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revolution of the hyperbola -^—^ = 1 about its conjugate
Oi c

axis.

The figure shews the nature of the surface.

68. The surface whose equation is

of y^ ^^ — ]

is called an hyperholoid of two sheets.

The intercepts on the axis of x are real, those on the other

two axes are imacjinarv.

The sections by the planes 2/ = and ^ = are hyper-

bolas.

The section by the plane a^ = is imaginary. The parallel

plane ijc = h does not meet the surface in real points unless

h^ > a^ If F > d^ the section is an ellipse the axes of which
become greater and greater as k becomes greater and greater.

The surface therefore consists of two detached portions as in

the figure.

If & = c, the section by any plane parallel to a? = is

a circle. Hence the surface is that formed by the revolution

x^ if'

of the hyperbola -^ — "^ = 1 about its transverse axis.

\

69. The surface whose equation is Ax^ + B\f + Cz^ = is

a cone.

4—2
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A cone is a surface generated by straight lines which
always pass through a fixed point, and which obe}^ some other

law. The lines are called generating lines, and the fixed

point through which they pass is called the vertex of the

cone.

If the vertex of a cone be taken as origin, the equation

of the surface is homogeneous. This follows at once from the

consideration that if (x, y, z) be any point P on the surface,

any other point {kx, ky^ kz) on the line OP is also on the

surface.

Conversely any homogeneous equation represents a cone

whose vertex is the origin of co-ordinates. For, if the values

X, y, z, satisfy a homogeneous equation, so also will kx, ky,

kz, whatever the value of h may be. Hence the line through

the origin and any point on the surface lies wholly on the

surface.

The general equation of a cone of the second degree, or

quadric cone, referred to its vertex as origin is therefore

ax^ + %^ + cz^ + 2fyz + 2gzx + 'Ihxy = 0.

70. If r be the length of the semi-diameter of the

surface ax^ + hy'^ + cz"" = 1, we have the relation

r

Hence the direction-cosines of the lines which meet the

surface at an infinite distance satisfy the relation

ar + hm^ + cn^ = 0.

Such lines are therefore generating lines of the cone

ax^ + hy"^ -f cz"^ = 0.

This cone is called the asymptotic cone of the surface.

71. The equation Ax^ + By^ + 2 Wz = is equivalent to

x^ iP' x^ y^
-j-\-y = 2z, or y — y = 2^, accordlng as the signs of A and B

are alike or different.
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The surface whose equation is

2 2

is called an elliptic paraboloid.

The sections by the planes x = () and y = are parabolas

having a common axis, and whose concavities are in the same
direction.

The section by any plane parallel to z = is an ellipse if

the plane be on the positive side of ^ = 0, and is imaginary if

the plane be on the negative side of z = {). Hence the

surface is entirely on the positive side of the plane ^ = 0, and
extends to an infinite distance.

The surface whose equation is

^ ^_9.

is called an hyperholic paraboloid.

The sections by the planes x = and 2/ = are parabolas

which have a common axis, and whose concavities are in

opposite directions.

The surface is on both sides of the plane s = 0, and
extends to an infinite distance in both directions.
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The section by the plane 2: = is the two straight lines

of y^
given by the equation y — '^ = 0. The section by any plane

parallel to z = is an hyperbola: on one side of the plane

z = the real axis of the hyperbola is parallel to the axis of

.r, and on the other side the real axis is parallel to the

axis of?/.

The fissure shews the nature of the surface.

7'2. It is important to notice that the elliptic paraboloid

is a limiting form of the ellipsoid, or of the hyperboloid of

two sheets ; and that the hj^perbolic paraboloid is a limiting

form of the hyperboloid of one sheet.

This can be shewn in the following manner.

The equation of the ellipsoid referred to (— a, 0, 0) as
/v.'^ nj^ ^ 2^

origin is -3 + '?^ + -^ = 0. Now suppose that a, h, c all
O/ C Oj

become infinite, while — ,
- remain finite and equal respec-

a a
y^ z^

tively to I and I' ; then, in the limit, we have ; + 7/ = 2^,

which is the equation of an elliptic paraboloid.

The other cases can be proved in a similar manner.

73. The equation Ao^ + B\j^-{-D = ^ represents a cylinder

[Art. 10], being a hyperbolic cylinder if A and B have dif-

ferent signs, and an elliptic cylinder if A and B have the same
sign. If the signs oi A, B, D are all the same the surface is

imaginary.

The equation Ax^ + Bjf' = represents two intersecting

planes, which are imaginary or real according as the signs of

A and B are alike or different.

The equation x^ = 2hy represents a cylinder whose guiding

curve is a parabola, and which is called a parabolic cylinder.

The equation x^ = lc represents the two parallel planes

x= ± s/lc.
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Ex. 1. The sum of the squares of the reciprocals of any three diameters

of an ellipsoid which are mutually at right angles is constant.

If r^ be the semi-diameter whose direction-cosines are (Z-^, %, tIj) we
1 Z 111 " 71

have —5 = -^ + yo- + -7- , and similarly for the other diameters. By addition

1 1 1 111
we have -^ -1- — +—, = -^ + 7^ + -

.

Tj^ r^' rg- a^ 0^ c-

Ex. 2. If three fixed points of a straight line are on given planes which
are at right angles to one another, shew that any other point in the line

describes an ellipsoid.

Let A, B, C be the points which are on the co-ordinate planes, and
P {x, y, z) be any other fixed point whose distances from A, B, C are a, h, c.

Then - = L^= m, and -=n, where I, vi, n are the direction cosines of theah c

line. Hence the equation of the locus is -^ -f f- -t- -s=l.
a^ b^ c^

Ex. 3. Find the equation of the cone whose vertex is at the centre of an
ellipsoid and which passes through all the points of intersection of the

ellipsoid and a given plane.
3p lyS ^2

Let the equations of the ellipsoid and of the plane be -^+^2+ ~2~^^ ^^^

lx + my+nz = l. We have only to make the equation of the ellipsoid

homogeneous by means of the equation of the plane : the result is
o '* U

% + j7, + -^={lx + m7j-\-nzy-.
a^ 0- c^

For this equation being homogeneous represents a cone whose vertex is

at the origin ; and it is clear that the plane cuts the cone and the ellipsoid in

the same points.

Ex. 4. Find the general equation of a cone of the second degree referred

to three of its generators as axes of co-ordinates.

The general equation of a quadric cone whose centre is at the origin is

ax"^ + hy^ -t- cz^ + 2fyz + 2gzx + 2hxy = 0,

If the axis of a: be a generating line, then y= 0, z= must satisfy the

equation for all values of x ; this gives a= 0. Similarly, if the axes of y andz
be generating lines, 6= and c = 0. Hence the most general form of the

equation of a quadric cone referred to three generators as axes is

fyz + gzx+ hxy= 0.

Ex. 5. Find the equation of the cone whose vertex is at the centre of a
given ellipsoid, and which goes through all points common to the ellipsoid

and a concentric sphere.
yjj2 ^2 ^2

If the equations of the ellipsoid and sphere be —^ + j-2+~2~^f ^^^

x^ + y^-\- z^=r' respectively ; the equation of the cone will be
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Ex. 6. Find the equation of the cone whose vertex is the point (a, /3, y)

and whose generating lines pass through the conic — + ^ = 1, 2=0.

Let any generator be —z—=-—-= —-, This meets z=0 where
I m n

orx=a-l y, and 2/ =^-^ y. Hence i (a-^7)Vj^ (^-^-^7=1'

--^{an-yl)~+ j-^{^n-ymy=n'^. Substitute for I, m, n from the equations of

1 1
the line, and we have ~T,{az-yx)- + Y^{^z-yy)'— {z-y)^, the required

equation.

74. If the origin be the centre of the surface, it is the
middle point of all chords passing through it; hence if

(x^, 2/j, z^) be any point on the surface, the point (— iCj, — y^, — z^
will also be on the surface.

Hence we have

ax^ + hy^ + cz^ + 2fy^z^ + 2gz^x^ + 2hx^y^ + 2ux^ + 2vy^

+ 2ivz^ + d = 0,

and ax^ + hy^^ + cz^ + 2/1/^^^ + 2^^^a7j + ^hx^y^ — 2ux^ — 2vy^

-2wz^ + d = 0;
therefore ux^ + vy^ + wz^ = 0.

Since this equation holds for all points (aj^, y^, z^) on the
surface, we must have u, v, w all zero.

Hence, when the origin is the centre of a conicoid, the
coefficients of x, y and z are all zero.

75. To find the co-ordinates of the centre of a conicoid.

Let (f, 7], f) be the centre of the surface ; then if we take

(f, 7], f) for origin, the coefficients of x, y, and z in the trans-

formed equation will all be zero. The transformed equation
will be [Art. 44]

a{x + ^f + h{y + r^Y + c{z+t;Y-^2f{y + 7f){z + ^

+ 2w{z + ^) + d = 0.
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Hence the equations giving the centre are

a^ + hy + g^+ u = 0,

H + ^V+f^-^ v = 0,

and g^ +fy + c^-\-w = 0,

Therefore

I -V _

&

h,
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The determinant on the right side of (iv) is called the

discriminant of the function F {x, y, z), and is denoted by the

symbol A.

The determinant on the left side is the discriminant of

the terms in F{x, y, z) which are of the second degree; it is

also the minor of d in the determinant A, and, as in Art. 57,

we shall denote it by D. Equation (iv) may therefore be
written

-f d'D = ^ (v).

76. The equations for finding the centre can also be
obtained from Art. 58 (i); for (^, 77, ^) will be the middle

point of every chord which passes through {^, 7], ^), pro-

vided
dF^cIF_dF_^
d^ dr] d^

It should be noticed that the co-ordinates of the centre

are given by the equations

U V~W~D'
where U, V, W, D have the same meanings as in Art. 57.

77. If, by a change of rectangular axes through the same

origin, ax^ + hy"^ + cz^ + %fyz + 2gzx + 2]ixy

becomes changed into

aV + 6y + cz^ + 2f'yz + 2gzx + 2h'xy
;

then, since x^ •\-y^ -\- z^ is unaltered by the change of axes,

ax"" + hf + c^' + Ifyz + Igzx + "Ihxy - \ {x^ + 7/- + z''). . .(i)

will be chansfed intoo

aV + h'y' + cV + 2/> + 2g'zx + 2Jixy

-X(x'+y' + z') (ii).

The expressions (i) and (ii) will therefore be the product

of linear factors for the same values of X.



INVAKIANTS. 59

The condition that (i) is the product of linear factors is

a — \, h , g 1

= 0,

h , h-\ f
g > f y c-\

that is

X''-X'(a + h + c) + \ {be + ca + ab -f - g-- J^)

-(abc + 2fgh-af'-bg'-cJf) = 0.

The condition that (ii) is the product of linear factors is

similarly

\' - X' (a' + b' + c) + \ (b'c' + c'a' + aV -f - g"" - h'')

- {ab'c + 2fg'h' - a'f - b'g" - cV) = 0.

Since the roots of the above cubic equations in \ are the
same, the coefficients must be equal.

Hence the following expressions are unaltered by any
change of rectangular axes through the same origin, and
are therefore called invariants

:

a-\-b + c I,

bc+ca + ab-f'-g^-h'' II,

abc + 2fgh-af'-bg'-ch'' III.

Since the coefficients of the terms of the second degree
are unaltered by a change of origin, the axes being parallel

to their original directions, it follows that the expressions
I, II, and III are unaltered by any change of rectangular
axes.

78. We have seen [Art. 63] that by a proper choice of

rectangular axes ax^ + by^ + c^ -^ 2fyz + 2gzx + 2}ixy can al-

w^ays be reduced to the form ao^ -f ^y^ + 7^^ ; and this re-

duction can be effected without changing the origin, for the
terms of the second degree are not altered by transforming to

any parallel axes.

Now a?'' + 2/^ + ^ is unaltered by a change of rectangular
axes through the same origin. Hence, when the axes are so

changed that
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ax^ + hy^ + cz^ + 2fyz + 2gzx + ^hxy becomes ax^ + ^y^ + 72:',

ax"" + 6?/' + cz^ + 2/7/^ + 2j^^ + 2]ixy - \ (a;' + 3/' + s'O . . .(i),

will become

ax^ + Py'' + r^z''-\{x^ + y'' + z') (ii).

Both 'these expressions will therefore be the product of

linear factors for the same values of \. The condition that

(i) is the product of linear factors is

= 0. .(iii).a — \, h
, g

h , h-\, f
9 , f >

c-X

But (ii) is the product of linear factors when \ is equal to

a, 13, or 7.

Hence the coefficients a, /3, 7 are the three roots of the

equation (iii).

The equation when expanded is

X' -V (a + 6 + c) + X (a6 + Z^c + ca -f - g^ - It")

- (abc + 2fgh - af - hg' - ch') = 0.

This equation is called the discriminating cubic.

It should be noticed that the equation is the same as that

found in Art. 60.

79. We proceed to shew how to find the nature of a

conicoid whose equation is given.

First write down the equations for finding the centre of

the conicoid ; and from Art. 75 we see that there is a definite

centre at a finite distance, unless the determinant

a, h, g

h h, f
0^ / c

~B

is zero.
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If D bo not zero, change to parallel axes through the

centre, and the equation becomes

ax^ + hy^ + cz^ + ^fyz + 2gzx + Ihxy + cZ' = 0,

where d' is found as in Art. 75.

Now, keeping the origin fixed, change the axes in such a

manner that the equation is reduced to the form

Then, by Art. 78, a, /3, 7 will be the three roots of the dis-

criminatino; cubic.

[When the discriminating cubic cannot be solved, since its

roots are all real [Art. 64], the number of positive and of

negative roots can be found by Descartes' Rule of Signs.]

Since Dd' = A, the last equation may be written in the

form Bxx' + D/Sf + Dyz' + A = 0.

If the three quantities ^\ ^. ^ are all negative,

the surface is an ellipsoid ; if two of them are negative, the

surface is an hyperholoid of one sheet ; if one is negative, the

surface is an hyperholoid of two sheets ; and if they are all

positive, the surface is an imaginary ellipsoid.

If A = 0, the surface is a co7ie.

Ex. (i). llx''' + 10i/ + (jz^-8ijz + 4:Zx-Uxy + 72x-72y + S6z + 150 = 0.

dF dF dF
The equations for finding the centre are -— = --— = —-= 0, or

ax dy dz

11a;- 6?/ + 22; + 36 = 0,

- Ga; + 10?/-42-36= 0,

2x- 4?/ + 6z + 18= 0.

Therefore the centre is ( - 2, 2, - 1).

The equation referred to parallel axes through the centre will therefore be

lla;2 + 10i/2 + 6^2 _ 8^2 + ^zx -12xy-12 = 0. [Art. 75 (iii) .]

The Discriminating Cubic is \-^ - 27\2 + 180\ - 324 = ; the roots of which

are 8, 6, 18. Hence the equation represents the ellipsoid Bx^ + 6y^ + lSz^= 12

x^ y^ z^ ,^+1 + ^=1.

We can find the equations of the axes by using the formulae found in

Art. 60. The direction-cosines of the axes are |, t> l*» l> h "1

5

1
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Ex. (ii). x' + 2y- + 3z--4.xz-Axy + d = 0.

The Discriminating Cubic is X^- 6\2 + 3\-f 14 = 0. All the roots of the

cubic are real ; hence, by Descartes' Eule of Signs, there are two positive

roots and one negative root. The surface is therefore an hyperboloid of

one sheet, an hyperboloid of two sheets, or a cone, according as d is

negative, positive, or zero.

80. Next suppose that D = 0. Then the three planes

[Art. 75 (i)] on which the centre lies will not intersect in a

jDoint at a finite distance from the origin, and we shall have
three cases to consider according as the planes meet in a

point at infinity, or have a common line of intersection, or

are all parallel to one another. These three cases we shall

consider in the following Articles.

It should be observed that when J) = one root of the

discriminating cubic is zero.

81. The conditions that the planes whose equations are

aw + hy + gz + u = 0,

hx + by + fi + V = 0,

and 9^+fy+ cz + w=0,
may be parallel are

aha T h h f
It' h f 9 f c

These conditions may be written

af=gh, hg=-hf, ch=fg (i).

Xow these are the conditions that the terms of the second

degree should be a perfect square ; and when this is the case

it is obvious on inspection.

When the terms of the second degree are a perfect

square, the general equation can be written in the form

fgli[%,-\-'^+j\ +2ux + 2vg + '2w2 + d=0 (ii).

If the plane ux + vy + wz = is parallel to the plane

X y z ^
7^ + ^ + 7 = 0,

f 9 ^^
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the equation (ii) will represent two 'parallel ])lanes : the con-

ditions for this are

uf= vg =wh (iii).

If the conditions (iii) are not satisfied, the equation (ii) is of

the form Aif +Bx = 0,

which represents a parabolic cylinder whose generating lines

are parallel to y = 0, ^ = 0.

Hence the general equation of the second degree repre-

sents a parabolic cylinder whose generating lines are parallel

to the line

X 11 z

f g h

provided the conditions (i) are satisfied, and that (iii) are not
satisfied.

The latus-rectum of the principal parabolic section can be
found by the same method as that employed in Conies,

Art. 172.

Ex. Find the nature of the conicoid whose equation is

4^2 + 2/- + 4^^ - ^ijz + Qzx - ixy + 2x-4:y + 5z + l = 0.

The equation is

{2x-y + 2z)^ + 2x-4y + 5z+l= 0.

This is equivalent to

{2x-y + 2z + \)^=x {i\ ~2) -y {2\- i) +z {4\- 5) -1.

The planes 2.r-?/ + 22 + X= 0, and x{A\-2)-7j {2\-4)+z{4:\-5)-l = 0,

will be perpendicular, if X= l. Hence the equation of the surface maybe

written {2x-y + 2z + lY= 2x + 2y -z 1,

2x-y + 2z +lY 1 2x + 2y-z~l
or

/2x -y + 2z + lY _
3

•

a

Hence, taking 2x-y + 2z+l = 0, and 2x + 2y - z-l = as the planes y=
and x= respectively, the equation of the surface will be

2 1V =— X.y 3**"

Hence the latus-rectum of 9, principal parabolic section is :=

.

o
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82. Next suppose that the three planes on which the

centre lies are not all parallel, but that they have a common
line of intersection.

If we take any point on the line of centres for origin, the

equation will take the form

ax"" + hf + C2^ + 2/7/^ + 2g2x + 2hxy + cZ' = 0.

Then, keeping the origin fixed, by transformation of axes

the equation will be reduced to the form

ax^-\-Py''-\-d' = (i).

One root of the discriminating cubic is zero, since D = ;

and the roots a, ft are given by the equation

If df = 0, the surface represented by the equation (i) is

Uuo planes, real or imaginary.

If df be not zero, the surface is a cylinder.

The conditions that the three planes

ax + hi/ -\- gz + u = 0, ^

hx + hy +fz + v =0,

gx -\- fy -\- cz -\-w = 0,

may have a common line of intersection, are given by

a, h, g, u
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The Discriminating Cubic is X3-37\^ + 84\ = 0. One root is zero, and the
other two roots are positive ; hence the equation is an elliptic cylinder.

The axis of the cylinder is the line of centres ; and its equations are

x_y-10_z—l

S3. If the planes on ^Yhicll the centre lies meet at a j^oint

at infinity, we proceed as follows.

Since one root of the discriminatinsf cubic is zero, the
equation can always be solved : let the roots be a, ^, 0.

Find the directions of the principal axes of the surface,

by means of the equations of Art. 60; and take axes parallel

to these principal axes. The equation will then become

oix' + 13?/ + 2ux + 2i'ij + 2w'z -\-d = 0,

or, by a change of origin,

ax^+l3/ + 2w'z = 0.

Hence the surface is a paraboloid, the latera recta of its

2w' 2w'
principal parabolic sections being—- and -7^—

.

Ex. Find the nature of the surface whose equation is

322_6y^-6^x-7x-5?/ + G2 + 3 = 0.

The Discriminating Cubic is X^- 3\-- 18\ = 0; the roots of which are G,

-3,0. 11-2
The direction-cosines of the prmcij^al axes are -,- , — , —. _-

;

~7q ' ~7q ' "7q ' ^^"^ ~7o ' ~7o ' ^* Hence to find the equation referred to

axes parallel to the principal axes, we must substitute

X y z X y z —2x y

;76 + ;73"^^' ;7B'^73~;/2 ^s^"^^'

for X, y, z respectively. The equation will then become

6x2 - 3 ?/2 - V6a; - 2^3?/ - ^2^ + 3= ;

or, by changing the origin 6x- — Zy- - fJ2z= 0.

Thus the surface is a hyperbolic paraboloid, the latera recta of the principal

parabolas being -^^2 and 1->J2.

S. S. G. 5
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84. It follows from Art. 75 (ii) and (iv) that when D is

not zero, the necessary and sufficient condition that the
surface represented by the general equation of the second
degree may be a cone is A = 0.

When A = and also D = 0, then will U, V and W be
all zero*: hence [Arts. 81 and 82] the surface must be either

a cylinder or two planes ; and cylinders and planes are

limiting forms of cones. Conversely, when the surface re-

presents a cylinder, or two planes, U, V, W and D are all

zero, and therefore also A = 0.

Hence A = is the necessary and sufficient condition

that the surface represented by the general equation of the

second degree may be a cone.

85. To find the conditions that the surface represented hy

the general equation of the second degree may he a surface of
revolution.

We require the condition that two of the roots of the dis-

criminating cubic may be equal. In that case

ax^ + 6/+ c/ + 2fyz + 2gzx + 2hxy

can be transformed into

ax^ + ay"^ + 7^^

Hence

ax^+hf + cz'+^fyz-^^gzx + 2hxy - \ (^^2/' + ^')...(i),

* This can be proved as follows

:

"We have uTJ+ vV+ loW+ dD = ^.,

And, since a determinant vanishes when two of its rows are identical, we
have also

aV+hV+gW+uI) = (i,

hU+bV+fW+vD = 0,

and gU+fV+ cW+icD = 0.

Hence when A = and D = 0, unless 77, F, W are all zero, we can eliminate

U, V, W from the first equation and any two of the others : we thus

obtain three determinants which are all zero ; but these determinants are

U, V, and W.
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can be transformed into

a£'-\-af^-r^z^-\{x^-Vf-\-z') (ii).

Now if we take X = a, (ii) will be a perfect square.

Hence if the surface is a surface of revolution, we can, by
a proper choice of X, make (i) a perfect square ; and that

square must be

{x si(a -\) + ysl(})-\)^-z ^{c - X)}1

We therefore have

V(c -X) ^{a-X) = h[ (iii).

Hence, iff, g, h he all finite, we have

a_?^ = 6-¥=c-f = X (iv),

the required conditions.

Let h, any one of the three quantities f, g, h, be zero

;

then from (iii) we see that X = a or X = 6, and therefore also

9 = or/=0.
Suppose ^ = and h = ; then X = a, and the condition

for a surface of revolution is

(b-a){c-a) =f (v).

Examples on Chapter HI.

1. Determine the nature of the surfaces represented by the
following equations

:

(i) X- - 2y^ + 6;2' + 1 2xz + a' = 0. *^^ • <^'^- ^^'^ "

y 7 i / (^0 x^ + y^ + z^ + ixy - 2xz + iyz = 1. »/

(iii) x^ — 2xy — lyz — 2zx = ci?.

(iv) 32x' + 2/' + 4;s^ - 1 ^zx -8xy = l.

(v) Jx+Jy+Jz = 0.
^'^'""

(vi) 2x' + 5y' + z' - 4:xy - 2x- iy - S = 0.

0—2
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2. Find the nature of the surfaces represented by the following

equations

:

(i) a;' + 2?/^ — 3z^ - 4:yz + Szx — 1 2xt/ + 1=0.

(ii) 2x' + 2i/- 4.Z- - 2yz - 2zx -bxy -2x-2ij ^ z=0.

(iii) 5ic' - ?/" + is" + ^xz + 4:xy + 2x + 4?/ + 6;:; = 8,

(iv) 2x" + 3y^ + Zyz + 2zx + ^xy — 4^/ + 8;2 - 32 = 0.

Find the equations of the axes of (i), and the latera recta of

the principal parabolas of (ii) and of (iii).

3. Shew that the equation

Qi? -V y^ -^ '^ \- yz -\- zx ^- xy = \^

represents an ellipsoid the squares of whose semi-axes are 2, 2, \.

Shew also that the equation of its principal axis is x — y-=z.

4. Shew that, if the axes, supposed rectangular, be turned

round the origin in any manner, ir -{-v" ^-vr will be unaltered.

5. Shew that, if three chords of a conicoid have the same
middle point, they all lie in a plane, or intersect in the centre of

the conicoid.

6. Through any point lines are drawn in fixed directions

which meet a given conicoid in points P, F' and Q^ Q' respectively

;

shew that the rectangles OP, OP and OQ, OQ' are in a constant

ratio.

7. If any three rectangular axes through a fixed point cut

a given conicoid in P, P' ; Q, Q' and R, R' ; then will

PP' QQ" RR"
OP'.OP' OQ\OQ'^ OR\OR"'

1
1 1 1

OP.OF^^ OQ. OQ' ^ OR . OR'*

be constant.



CHAPTER IV.

CoNicoiDS Referred to their Axes.

86. In the present chapter we shall investigate some

properties of conicoids, obtained by taking the equations

of the surfaces in the simplest forms to which they can be

reduced.

We shall begin by considering the Sphere.

The Sphere.

87. The equation of the sphere whose centre is {a, h, c)

and radius d is [Art. 5]

The equation of any sphere is therefore of the form

a;2 + 2/2 _^ ^2 _^ 2Ax + 2Bij+2Cz +i)= 0.

Conversely every equation of the above form, that is every

equation in which the coefficients of^^ y\ and z"^ are equal, and

in which the terms yZj zx, xy do not appear, represents a

sphere.

88. The general equation of a sphere contains four

constants, and therefore a sphere can be made to satisfy /owr

conditions. "We may, for example, find the equation of a

sphere which passes through any four points.
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If (^j, y^, z^, ^, ?/,, ^,), (x,, 2/3, ^3), (;r,, 7/,, z^ be the four

points the equation of the sphere through them will be.

= 0.x^ + iy + z\
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"We have seen that the tangents drawn to two spheres

from any point on their radical plane are equal.

The radical planes of four given spheres meet in a point,

viz. in the point givfen by S^ = S^ = S^ = S^, where /S\ = 0,

S^ = 0, S^ = 0, S^= are the equations of the four spheres,

in each of which the coefBcient of x^ is unity.

This point is called the radical centre of the four spheres,

Ex. 1. Find the equation of the sphere "which has {x^, i/i, z-^) and
{x^, 1/2, z^) for extremities of a diameter.

If {x, y, z) be any point on the sphere, the direction- cosines of the h'nes

joining {x, y, z) to the two given points are proportional to x-x^, y - y^^,

z — Zj, and x -x^, y-y-2i ^~ ^i-

The condition of perpendicularity of these lines gives the required

equation
{x - x-^ {x - x.^ + (2/

-
yi) (y - y.^ + (2 - z^ {z - z^^ = 0.

Ex. 2. The locus of a point, the sum of the squares of whose distances
"

from any number of given points is constant, is a sphere.

Ex. 3. A point moves so that the sum of the squares of its distances

from the six faces of a cube is constant; shew that its locus is a sphere.

Ex. 4. A, B are two fixed points, and P moves so that PA=nPB ; shew
that the locus of P is a sphere. Shew also that all such spheres, for different ^
values of n, have a common radical plane.

Ex. 5. The distances of two points from the centre of a sphere are pro-

portional to the distance of each from the polar of the other.

Ex. 6. Shew that the spheres whose equations are

x^ + y^ + z'^ + 2Ax + 2By + 2Cz +D = 0,
^

and <c^ + y^-{-z'' + 2ax + 2by + 2cz~{-d=0,

cut one another at right angles, if

2Aa + 2Bb + 20c -D - d= 0.

91. We proceed to prove some properties of the ellipsoid;

and we shall always suppose the equation of the surface to be222
\- — A— = 1

unless it is otherwise expressed.

To obtain the properties of the hyperboloids we shall

only have to make the necessary changes in the signs of

h^ and c^.
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We have already seen [Art. 52] that the equation of the

tangent plane at any point {x, y', z) is

xx' mf ,
zz .

The length of the perpendicular from the origin on the

tangent plane at the point {x
,
y' , z) is [Art. 20] given by the

equation
-I '2 '2 '2

1 X y -s ,.'\

-.= "4 + 71 + — (lO-
2^^ a c

Equation (i) is equivalent to Ix -f my + nz = p, where

I _x m _y n _z'

p^d' ' p~P' p~&''

, , aH^ + }fm^ A- c'n' x"" y\z"'
,

therefore o = -^ + 7T + ~^ = ^*
pr ci- b c

Hence the plane whose equation is Ix + my i-nz=p, will

touch the ellipsoid, if

p''=aT + hW + c'n' (iii).

92. To find the locus of the point of intersection of three

tangent planes to an ellipsoid which are mutually at right

angles.

Let the equations of the planes be

l^x + m^y + n^z = J {aH^^ + h^m^ + c'n^),

l,^ X + 77Z, y-{-n,^z = J (aX + Z>X' + ^^W)^
l^x-\- 7/?3 y^Qi^z = ^ (a\^ + h^m^ + &n^).

By squaring both sides of these equations and adding, we
have in virtue of the relations between the direction-cosines

of perpendicular lines

x' + y''-]-z'' = a'' + ¥-\-c\

The required locus is therefore a sphere. This sphere is

called the director-sphere of the ellipsoid.

93. The normal to a surface at any point P is the

straight line through P perpendicular to the tangent plane

at P.
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The normal to an ellipsoid at the point {x\ y\ z) is

therefore

x — x'_ y —y _ z — z

X y z

Since /g+^VQ = l, [Art. 91.]

the direction-cosines of the normal are

px py pz
~^' 'W' 'J'

94. If the normal at {x\ y\ z) pass through the par-

ticular point (/, g, h) we have

X y z

^ 'W '^

Put each fraction equal to \ then

. aV , h'g . , cVi

Hence, since

we have
a'

"^
6^

"^
c'

'

Since this equation for \ is of the sixth degree, it follows

that there are six points the normals at which pass through a

given point.

Ex. 1. The normal at any point P of an ellipsoid meets a principal ^
plane in G. Shew that the locus of the middle point of PG is an ellipsoid.

Ex. 2. The normal at any point P of an ellipsoid meets the principal ^
planes in G^ G^, G3. Shew that PG^, PG^, PG^ are in a constant ratio.

Ex. 3. The normals to an ellipsoid at the points P, P' meet a principal X
plane in G, G' ; shew that the plane which bisects PP' at right angles bisects ^
GG'.
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Ex. 4. If P, Q be any two points on an ellipsoid, the plane throuph

the centre and the line of intersection of the tangent planes at P, Q, will

bisect FQ.

Ex. 5. P, Q are any two points on an ellipsoid, and planes through the

centre parallel to the tangent planes at P, Q cut the chordPQ in P', Q'. Shew
that PP' = (?(?'.

95. The line whose equations are

x — a__y —^_z — 7_
I m n- '

meets the surface where

(a + hf {l±mrf {y + nrY _
a'

"^"
b'

"^
6' '

If (a, p, y) be the middle point of the chord, the two
values of ?• given by the above equation must be equal and
opposite; therefore the coefficient of r is zero, so that we
have

Za 772/3 ny

a c

Hence the middle points of all chords of the ellipsoid

v/hich are parallel to the line

X _ y _z
I m n

are on the plane whose equation is

Ix mv nz

This plane is called the diametral plane of the line

I 111 n

'

The diametral plane of lines parallel to the diameter

through the point {x
, y\ z) on the surface is

OCX
. W' ZZ' /^ /-x

hence the diametral plane of any diameter is parallel to the

taDgent plane at the extremities of that diameter.
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The condition that the point {x\ y" , z") should be
on the diametral plane (i) is

r ft I It litxx_ y_y_ + ^^-Q

The symmetry of this result shews that if a point Q be on
the diametral plane of OP, then will P be on the diametral
plane of OQ.

^ Let 0^' De, the line of intersection of the diametral
planes of OP, VQ ; then, since the diametral planes of OP,
OQ pass through OR, the diametral plane of OR will pass
through P and through Q, and will therefore be the plane
POQ, so that the plane through any two of the three lines

OP, OQ, OR is diametral to the third.

Three planes are said to be conjugate when each is dia-

metral to the line of intersection of the other two, and three
diameters are said to be conjugate when the plane of any two
is diametral to the third.

96. If {x^, y^, z^, {cc.-,, 7/^, z^) and (x^, y^, z^ be extremities

of conjugate diameters, we have from Art. 95,

^2- + ^2 + ^2 - ^ j

Also, since the points are on the surface,

a' ^ h' ^ & \

a' ^ ¥^ c^
^ ^

a"
"^

h'
'^ c^~
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Now from equations (ii) we see that

^1 2/1 ^1 . ^2 3/" ^'^ '
^

a h' c' a' h' c'
"'^^ a'~h'i'

are direction-cosines of three straight lines, and from equations

(i) we see that the straight lines are two and two at right

angles. Hence, as in Art. 45, we have

ind

2/x +2/2 +2/; .(iii),

^1^1+ ^22/2 +^.y3=0]
2/1^1+2/2^2+^3^3=01 (iv).

^1^1 + ^2^2 + ^3^3 = 0'

"VVe have also from Art. 46.

= 1, or X5
a

a

h
b

2/2

b

c

£2

c

1»

X.2'

CPo

2/1

»

2/2'

2/3

»

= abc (V).

From (iii) we see that the sum of the squares of the pro-

jections of three conjugate semi-diameters of an ellipsoid on

any one of its axes is constant.

Also, by addition, we have, tJie sum of the squares of three

conjugate diameters of an ellipsoid is constant.

From (v) we see that the volume of the parallelopiped

which has three conjugate semi-diameters of an ellipsoid for
conterminous edges is constant.

In the above the relations (iii) and (iv) were deduced

from (i) and (ii) by geometrical considerations. They
could however be deduced by the ordinary processes of algebra

without any consideration of the geometrical meaning of the

quantities, and hence the results are true for the hyper-

boloids.
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97. The two propositions (1) that the sum of the squares

of three conjugate semi-diameters is constant, and (2) that

the parallelepiped which has three conjugate semi-diameters

for conterminous edges is of constant volume, are extremely

important. We append other proofs of these propositions.

Since in any conic the sum of the squares of two conjugate

semi- diameters is constant, and also the parallelogram of

which they are adjacent sides, it follows that in any conicoid

no change is made either in the sum of the squares or in the

volume of the parallelepiped, so long as we keep one of the

three conjugate diameters fixed.

We have therefore only to shew that we can pass from
any system of conjugate diameters to the principal axes of

the surface by a series of changes in each of which we keep
one of the conjugate diameters fixed.

This can be proved as follows :—let OP, OQ, OR, be any
three conjugate semi-diameters, and let the plane Q OB cut a

principal plane in the line 0Q\ and let OR' be in the plane

QOR conjugate to OQ'; then OP, OQ', OR' are three

conjugate semi-diameters.

Again, let the plane POR' meet the principal plane in

which OQ' lies in the line OP", and let OR'^ be conjugate to

OP" and in the plane POR' ; then OP", OQ' and OR" are

semi-conjugate diameters. But, since OR" is conjugate to OP"
and to OQ' , both of which are in a principal plane, it must be

a principal diameter.

Hence, finally, we have only to take the axes of the

section Q'OP" to have the three principal diameters.

98. It is known that any two conjugate diameters of a
conic will both meet the curve in real points when it is an
ellipse ; that 07ie will meet the curve in imaginary points

when it is an hyperbola ; and that both will meet the curve

in imaginary points when it is an imaginary ellipse. Hence,
by transforming as in the preceding Article, we see that

three conjugate diameters of a conicoid will all meet the

surface in real points when it is an ellipsoid ; that one will

meet the surface in imaginary points w^hen it is an hyper-
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boloid of one sheet; and that two ^vill meet the surface in

imaginary points when it is an hyperboloid of two sheets.

99. To find the equation of an ellipsoid referred to

three conjugate diameters as axes.

Since the origin is unaltered we substitute for x, y and z
expressions of the form Ix + my + nz in order to obtain the
transformed equation [Art. 47].

The equation of the eUipsoid will therefore be of the form
Ax' + By" + Cz' + ^Fyz -\-2Gzx-\- IHxy = 1.

By supposition the plane ^ = bisects all chords parallel

to the axis of x. Therefore if (^^ y^, z^ be any point on the

surface, (— x^, 3/,, z^ will also be on the surface. Hence
Gz^x^ + B.x(y^ = for all points on the surface : this requires

that G=^H=0.
Similarly, since the plane ?/ = bisects all chords parallel

to the axis of y, we have H = F = 0.

Hence the equation of the surface is

Ax'-j-By'+ Cz'=l,
x^ y^ z' ^

or -7-2 + fa + --, = 1,
a c

where a', U, c' are the lengths of the semi-diameters.

100. We may obtain the relations between conjugate

diameters of central conicoids by the following method :

—

The expression

-r^ v^ z^

| +| + '-5 + ^(^' + 2/^+^=)

is transformed, by taking for axes three conjugate diameters

which make angles a, yS, 7 with one another, into the

expression

x' ^/2 ^2

-77^ +
J72
+ —i + y^ {x^ + y'^ + z^ 4- 2yz cos a + 2zx cos ^+ 2^1/ cos 7).

The two expressions will therefore both split up into

linear factors for the same values of A. Hence the roots of

the cubics

&+^)(J+'^)(?--^'^) = °'
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and

a
+ X , X cos 7 , \ cos /3

\ cos 7 , ,-7^ + X
,

X cos a

Xcos/5, X cos a , -t^ + X

=

are equal to one another.

Hence, by comparing coefficients in the two equations, we
have

a' + ¥-\-c'' = a^ + h"-\-c' (i),

Jyc" + c'a^ + a'Jf = 6'^c"^ sin^a + c'V sin'y5 +a'^6'^sInV (ii),

and

a6c = tx'Z^'c' ^J{\
- cos^a - cos^yS — cos^ +2 cos acos^cos7)..(iii).

Therefore the sum of the squares of three conjugate

diameters is constant; the sum of the squares of the areas of

the faces of a parallelopiped having three conjugate radii for

conterminous edges is constant ; and the volume of such a

parallelopiped is constant.

Ex. 1. If a parallelopiped be inscribed in an ellipsoid, its edges will be

parallel to conjugate diameters.

Ex. 2. Shew that the sum of the squares of the projections of three

conjugate diameters of a conicoid on any line, or on any plane, is constant.

Ex, 3. The sum of the squares of the distances of a point from the six l^
ends of any three conjugate diameters is constant ; shew that the locus of the

point is a sphere.

Ex. 4. If (Xi7/i^i), {x^y^^,. {x^iJzZi) he extremities of three conjugate -X
diameters of an ellipsoid, the*^equation of the plane through them will be

Ex. 5. Shew that the tangent planes at the extremities of three conju-

gate diameters of an ellipsoid meet on a similar ellipsoid.

Ex. 6. Shew that the locus of the centre of gravity of a triangle whose

angular points are the extremities of three conjugate diameters of an ellipsoid

is a similar ellipsoid.

V



so THE PARABOLOIDS.

The Paraboloids.

101. We have seen that the paraboloids are particular

cases of the central surfaces; properties of the paraboloids

can therefore be deduced from the corresponding properties of

the central surfaces. We will, however, investigate some of

the proj)erties independently.

We shall always suj)pose the equation of the surface

to be

a

102. To find the locus of the point of intersection of three

tangent j^lctnes to a j^ci^^ci^oloid which are mutually at right

angles.

Let l^x + m^y + n^z-\-p = be one of the tangent planes;

then, since the plane touches the surface, we have

al^' + hm^ = 2n^ p^. [Art. 57, Ii.]

Hence we may write the equation in the form

IjTijX + ni^n^y + n^^ 2 + h (al^ + hm^) = 0.

We have also

l^n^ X + ???2??2 2/ + 72/ ^ + i {al^ + &»?/) = 0,

and l^n^ x + m^n^ y + n^z + ^ (al^ + hm^) = 0.

Since the planes are at right angles, we have by addition

z+i(a-\-h) = 0;

hence the locus is a plane.

103. The equation of the normal at any point {x, y\ z)

of the paraboloid is

X — X _y —y _z — z

X y —1
a h
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'

The normal at (x, y\ z) will pass through the particular

point (/, g, h), if

f-x' g-y\_fi-z'

a h

Put each fraction equal to X ; then

af , hg
, 7 . ^

and substituting in

we have

»2 »2

a b

-f +^j£L^.2(/. + X).

The equation in \ is of the fifth degree; therefore

five normals can be drawn from any point to a paraboloid.

104. The middle points of all chords of the paraboloid

which are parallel to the line

X _ y _z
I m n

are [Art. 59] on the plane whose equation is

,dF dF dF ^
Z-r- + m -7- + ^ 7- =0,
ax ay as

Ix my „

or — + -y^ - ?i = 0.
a

Hence all diametral planes are parallel to the axis of the

surface.

It is easy to shew conversely that all planes parallel

to the axis are diametral planes.

A line parallel to the axis of the surface is called a

diameter. Every diameter meets the surface in one point at

a finite distance from the origin ; and this point is called the

extremity of the diameter.

S. S. G. 6
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The two diametral planes whose equations are

Ix my „

a

, Ix my , -

and — +—/-?i' = 0,
a

are such that each is parallel to the chords bisected by the

other, if

IV mm- + -T- =0.
a

If this condition be satisfied, the planes are called con-

jugate diametral planes.

The condition shews that conjugate diametral planes

meet the plane £^ = in lines which are parallel to conjugate

diameters of the conic

a

105. If we move the origin to any point (a, y8, 7) on the

surface, the equation becomes

aba
If we take the planes

x = 0, y=0, and — + ^-^=0
•^

' a b

as co-ordinate planes, and therefore the lines

^ _y _z X _y _z A ^ _y _ ^

for axes, we must [Art. 47] substitute

ax hy ax ^y

ibr .T, y, z respectively.

The transformed equation is

X y ^

a + - Z^ 4- ^a



CONES, ;^3

This is the equation to the surface referred to a point

(a, yS, 7) as origin, two of the co-ordinate planes being parallel

to their original directions, and the third being the tangent

plane at (a, /3, 7).

Ex. 1. Shew that the locus of the centres of parallel sections of a y
paraboloid is a diameter.

Ex. 2. Shew that aU planes parallel to the axis of a paraboloid cut the \/'

surface in parabolas.

Ex. 3. Shew that the latera recta of all parallel parabolLc sections of a y*

paraboloid are equal.

Ex. 4. Shew that the projections, on a plane perpendicular to the axis

of a paraboloid, of all plane sections which are not parallel to the axis, are

similar conies.

Ex, 5. P, Q are any two points on a paraboloid, and the tangent planes

at P, Q intersect in the line US ; shew that the plane through ES and the y^
middle point of PQ is parallel to the axis of the paraboloid.

Ex. G. Shew that two conjugate jjoints on a diameter of a paraboloid

are equidistant from the extremity of that diameter.

Ex. 7. Shew that the sum of the hitera recta of the sections of a

paraboloid, made by any two conjugate diametral planes through a lixegl

point on the surface, is constant.

Cones.

106. The general equation of a cone of the second

degree is

aoi^ + hf + cz^ + Ififz + Igzx 4- llixy = 0.

The tangent plane at any point {x\ y, z) on the

surface is

{x - x) (ax + hj' + fjz) + {y - y) (hx + by +fz)
+ (z- z) {gx -vfij + cz) = 0,

or

X (ax + hy + gz) + y {hx + hy +fz) + z (gx +fy + cz') = 0.

The form of this equation shews that the tangent plane

at any point on a cone passes through its vertex, as is geo-

metrically evident from the fact that the generating line

through any point is one of the tangent lines at that point,

and therefore lies in the tangent plane.

G—

2
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107. To- find the condition that the plane Ix+7)17/+712=0

may touch the cone whose equation is

ax' + hf + cz' + 2fyz + 2gzx + 2hxi/ = 0.

Comparing the equation of the tangent plane at the point

{x, y\ /), namely

X (ax + hy + gz) + y {lix + hy +fz) 4- z {gx +fy + cz) = 0,

with the given equation, we have

ax_±h/ + gz' ^ /^^' +W +fi' ^ ^-^^ +/y' + ^-'
^

Put each fraction equal to — X, then

ax + Ay' +^/ + X? =0,

/«:c' -J- 6y' +// + Xm = 0,

and gx -\-fij + cz + X?i = 0.

Also, since [x
, y\ z) is on the plane,

Ix + my' + 72/ = 0.

Eliminating x^ y\ /, X, we have the required condition

= 0,a,
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Hence, from the result of ttie last article, the reciprocal of

the cone

aa? + h-if + cz" + 2fyz + Igzx + 2hxy = 0,

is Ax" + Bf + Cz^ + 2Fijz -{-2GZX + 2Hxij - 0.

Since the minors of A, B, C, &c. in the determinant

A, II, G
H, B, F
G, F, C

are proportional to a, h, c, &c., we see that the relation be-

tween the two cones is a reciprocal one.

As a particular case of the above, the reciprocal of the

cone
x^ ip- z^

aj? + 6/ 4- c/ = 0, is - +f + - = 0.^ a b c

From this we see at once that a cone and its reciprocal

are co-axial.

109. To find the condition that a cone may have tliree

perpendicular generators.

Let the equation of the cone be

ax" + by"" + cz" + 2fyz + 2gzx + 2hxy = (i).

If the cone have three perpendicular generators, and we
take these for axes of co-ordinates, the equation will [Art. 73,

Ex. 4] take the form
Ayz-\-Bzx-\-Cxy=0 (ii).

Since the sum of the co-efficients of x^, y"^ and z"^ is an in-

variant [Art. 79] and in (ii) the sum is zero ; therefore the

sum must be zero in (i) also. Therefore a wecessarj/ condition

is

a-\-b + c=0 .^. (iii).

If the condition (iii) is satisfied there are an infinite

number of sets of three perpendicular generators. For take

any generator for the axis of x\ then by supposition any
point on the line y = O,z = is on the surface ; therefore the
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Co-cfficicnt of x' is zero, so that the transformed equation is of

the form
%'+ c^'+ 2/y^4- 2r;zx-]- 2hxy = (iv);

and since the sum of the co-efficients of x'^, ?/^, z^ is an in-

variant, ^^e have 6 -f c ^ 0.

Now the section of (iv) by the plane £c ^ is the two
straight lines

Z;/+c/ +2/5/^ = 0;

and these arei at right angles^ since 6 + c = 0.

110. If a cone have three perpendicular tangent planes,

the reciprocal cone will have three perpendicular generators.

Hence the necessary and sufficient condition that the

cone

ax^ + hf 4- cz^ + 2ff/z + 2gzx + 2hxy = 0,

may have three perpendicular tangent planes is

Ex. 1, CP, CQ, CR are tliree central radii of an ellipsoid which are

mutually at right angles to one another ; shew that the plane FQli touches

a sphere.

Let the equation of the plane PQR be lx + my + nz=p. The equation of

the cone whose vertex is the origin, and which passes through the intersection

, , ,,. .^x^tPz'^^. ic^ y'^ z'^ (Ix + my+nzV'^
of the plane and the ellipsoid -, + f., + — = 1, is — + jr + .; = '-

.

By supposition the cone has three perpendicular generators ; therefore

i 1 1 1

«- 6- 6- i)-

Ex. 2. Any two sets of rectangular axes which meet in a point form six

generators of a cone of the second degree.

Ex. 3. Shew that any two sets of perpendicular i^lanes which meet in

a point all touch a cone of the second degree.

111. To find the equation of the tangent conefrom any
jwint to an ellipsoid.

Let the equation of the ellipsoid he
2 2 2

£.+^+1 = 1



TANGENT CONE. 87

Let the co-ordinates of any two points P, Q be x, y, z

and x\ y'\ z" respectively.

The co-ordinates of a point which divides PQ in the ratio

m : n are

Tix + mx" ny + my' nz -f mz"

m + n ' m + n * m + n

If this point be on the ellipsoid, we have

(nx + mx")'^ (ny + mi/'Y inz' -f mz'y , , .

«

or n

a b G

„/^^ ?/^ -2^ -\ „ XX yy zz -\

/'2 "2 '"2 \

If the line PQ cut the surface in coincident points, the

7?

above equation, considered as a quadratic in — , must have

equal roots ; the condition for this is

/ '2 '2 '2 \ , //2 "2 ''2 \

Hence, if the point P {x, y\ z) be fixed, the co-ordinates

of any point Q, on any tangent line from P to the ellipsoid,

must satisfy the equation

a' ^ b' ^ e W b' ^ c'

XX yy ^^ ^2

.+f +^-1 =0 (i).

a c J

Hence (i) is the required equation of the tangent cone

from (a?', y\ z') to the ellipsoid.

112. If we suppose the point {x\ y, z) to move to an

infinite distance, the cone will become a cylinder whose

generatiDg lines are parallel to the line from the centre

ot the ellipsoid to the point {x, y, z).
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Hence, if in the equation of the enveloping cone we put

X = Ir, y = mr, z = ?ir,

and then make r infinitely great, we shall obtain the equation

of the enveloping cylinder whose generating lines are

parallel to

X _ y _z
I m n'

Substituting Ir, mr, nr for x, y , z respectively in the

-equation of the enveloping cone we have

Hence, when r is infinite,

\d' ^ b' ^ c' J W h' cV W 6^ cV

113. The equation of the enveloping cylinder can be

found, independently of the enveloping cone, in the following

manner.
The equations of the straight line which is drawn through

any point {x, y\ z) parallel to

X y _z
I m n *

X — X V — V z — z
are —j— = -—— = = r.

I in n

The straight line will meet the ellipsoid in two points

whose distances from {x, y\ z) are given by the equation

a' b' c^^+'^+^-i)+^-'r^+iF+c^
„/Z^ m^ it^\ ^

The straight line will therefore touch the surface, if

/x' y" z"" \ (V m^ n\ fix my nzV
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Hence tlie co-ordinates of any point, whicli is on a
tangent line parallel to

X y _ z

I m n
'

satisfy the equation

'x"^ y"^ z^ ^\ fP m^ n'^\ (Ix my nzX^ ^

which is the required equation of the enveloping cylinder.

Ex. (i). To find the condition that the enveloping cone may have three
perpendicular generators.

The equation of the enveloping cone whose vertex is {x', y\ z') is

If this have three perpendicular generators the sum of the coefficients of

x'\ ?/2, and z^ must be equal to zero [Art. 109]. Hence {x', y', z'), the vertex
of the cone, is on the surface

/I 1 iwa;2 y^ t-A-— y^ -
\a'

"^
&2

*"

cV W'^h^'^7^ j
~

a^
"^

64 + -4-

Ex. (ii). Shew that any two enveloping cones of an ellipsoid intersect in
plane curves.

The equations of the cones whose vertices are [x', y', z') and [x", y'\ z") are

yy +!£_i\2^ &2 + c2

respectively.

The surface whose equation is

(xx' yy' zz'
, y fx'"^ y"'^ 2"2

\ a^ h^ c^ J \a- h^ c^

/xx" yy" zz" ^Y foff"^ !/'2 z''-
,

\ a^ 0^ c^ J \ a- u- c-

passes through their common points, and clearly is two planes.

Ex. (iii). Find the equation of the enveloping cone of the paraboloid

ax^+by^ + 2z = 0.

Ans. (acc2 + hy"^ + 2z) [ax'^ + ly'^ + 2z') = [axx' + Irjif+z+ z'f.

Ex. (iv). Find the locus of a point from which three perpendicular

tangent lines can be drawn to the paraboloid ax- + hy'^ + 2^ = 0.

Ans. ah [x- + y-) + 2 (a + &) 2= 1.



90

Examples on Chapter IV.

Z' 1. Find the equation of a sphere which cuts four given spheres

orthogonally.

2. Shew that a sphere which cuts the two spheres aS = and
s/^ /S" = at right angles, will cut IS + m8' = at right angles.

3. OP, OQ, OR are three perpendicular lines which meet in
y^ a fixed point 0, and cut a given sphere in the points P, Q, R;

shew that the locus of the foot of the perpendicular from on
the plane FQR is a sphere.

4. Through a point two straight lines are drawn perpen-

dicular to one another and intersecting two given straight lines

at right angles ; shew that the locus of is a conicoid whose
centre is the middle point of the shortest distance between the

given lines.

5. Shew that the cohq Ax'+By" + Cz^+1Fyz-^2Gzx+2Hxy =
wdll have three of its generators coincident with conjugate diameters

v/ of -, +^'+-^=l,if ^ct^ + ^6-' + 6'c^ = 0.
a- h" c^

6. A plane moves so that the sum of the squares of its

distances from n given points is constant; shew that it always

touches an ellipsoid.

7. Tlie normals to a surface of the second degree, at all

points of a plane section parallel to a principal plane, meet two
fixed straight lines, one in each of the other principal planes.

8. Shew that the plane joining the extremities of three

conjugate diameters of an ellipsoid, touches another ellipsoid.

9. Having given any two systems of conjugate semi-diameters

of an ellipsoid, the parallelepiped which has any three for conter-

minous edges is equal to that which has the other three for

conterminous edges.

10. If lines be drawn through the centre of an ellipsoid

parallel to the generating lines of an enveloping cone, the cone so

Ibrmed will intersect the ellipsoid in two planes parallel to the

plane of contact.
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11. The enveloping cone from a point P to an ellipsoid has
three generating lines parallel to conjugate diameters of the

ellipsoid ; find the locus of /*.

12. The plane through the three points in which any three

conjugate diameters of a conicoid meet the director-sphere touches
the conicoid.

13. Shew that any two sets of three conjugate diameters
of a conicoid are generators of a cone of the second degree.

14. Shew that any two sets of three conjugate diametral
planes of a conicoid touch a cone of the second degree.

15. Shew that any one of three equal conjugates of an
ellipsoid is on the cone whose equation is

(or + J^ + e) (5 + |I + J)
= 3 (»^ +2/' + .').

16. D, E^ /^ and P, Q^ R are the extremities of two sets of

conjugate diameters of an ellipsoid. If jt?, pj, 2^2^ V^ ^^^ ^^^^ P^
pendiculars from the centre and P, Q^ R respectively on
plane DEF, prove that ^

P' + P2 -^Pf = ^P {Pi +P2 +7^3)-
^

17. The sum of the products of the perpendiculars from the

two extremities of each of three conjugate diameters on any
tangent plane to an ellipsoid is equal to twice the square on the

perpendicular from the centre on that tangent plane.

18. The distance r is measured inwards along the normal to

an ellipsoid at any point P, so that pr = 'ni^, where p is the per-

pendicular from the centre on the tangent plane at P ; shew that

the locus of the point so obtained is

2 3 7 " 2 2 2a X y c z -

(a'--wy {b'-my {c'-m'f

19. Through any point P on an ellipsoid chords PQ, PR, PS
are drawn parallel to the axes ; find the equation of the plane

^P*S', and shew that the locus of E, the point of intersection of

the plane QRS and the normal at P, is another ellipsoid. Shew
also that if the normal at P meet the principal planes in G^, G,^, G^

.1 11
2 111

then will ——V = -rrz^ +PK PG^ PG^ PG^
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20. PK is the perpendicular from any point on its polar

j)lane with respect to a conicoid and this perpendicular meets a

principal plane in G ; shew that, if PK. PG is constant, the locus

of P is a conicoid.
2 2

21. Shew that the cone whose base is the ellipse —, + Vs = !»
^ a' b

2 2

s = 0, and whose vertex is any point of the hyperbola -^—r^ — ^2

= 1 , 2/ = 0, is a right circular cone.

22. A cone, whose equation referred to its principal axes, is

x^ if
is thrust into an elliptic hole whose equation is —+'—, = 1 ; shew

that when the cone tits the hole its vertex must lie on the ellipsoid

x" y' ofl 1\_,

23. In a cone any system of three conjugate diameters meets

any plane section in the angular points of a triangle self polar

with respect to that section.

24. The enveloping cones which have as vertices two points

on the same diameter of a conicoid intersect in two parallel planes

between whose distances from the centre that of the tangent

plane at the end of the diameter is a mean proportional. What
is the corresponding proposition for a paraboloid?

25. Shew that any two enveloping cones intersect in plane

curves ; and that when the planes are at right angles to one

another, the product of the perpendiculars on one of the planes of

contact from the centre of the ellipsoid and the vertex of the

corresponding cone, is equal to the product of such perpendiculars

on the other plane of contact.

26. If a line through a fixed point be such that its con-

jugate line with respect to a conicoid is perpendicular to it, shew
that the line is a generating line of a quadric cone.

27. The locus of the feet of the perpendiculars let fall from

points on a given diameter of a conicoid on the j^olar planes of

those points is a rectangular hyperbola.
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28. Prove that the surfaces

ic' y_' _ 2;s ^ ^ _ ?f ^ ^ _ ^^

<^V^^' <^6/-^' <"V"^~3'
will have a common tangent plane if

2 i

29. Prove that an ellipsoid of semi-axes a, h, c and a concen-

tric sphere of radius
, , are so related that an in-^

Jb'c' + c'a' + d'b'

definite number of octahedrons can be inscribed in the ellipsoid,

and at the same time circumscribed to the sphere, the diagonals of

the octahedrons intersecting at right angles in the centre.

x^ if z^
30. Pind the locus of the centre of sections of — + ^-^ + -„ = ^

a' 6" c

which touch -7^ + , ,., + -7^ = 1.
a 6 ' c

31. Planes are drawn through a given line so as to cut an

ellipsoid; shew that the centres of the sections so formed all lie on

a conic.

32. Pind the locus of the centres of sections of an ellipsoid

by planes which are at a constant distance from the centre.

33. Shew that the plane sections of an ellipsoid which have

their centres on a fixed straight line are parallel to another straight

line, and touch a parabolic cylinder.

34. The locus of the line of intersection of two perpendicular

tangent planes to aaf + ly^ + cz^ = is

a(b + c)x^ + h{G + a)y^ + c{a + h)z^= 0.

35. The points on a conicoid the normals at which intersect

the normal at a fixed point all lie on a cone of the second degree

whose vertex is the fixed point,

36. Kormals are drawn to a conicoid at points where it is

met by a cone which has the axes of the conicoid for three of its

generating lines; shew that all the normals intersect a fixed

diameter of the conicoid.
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37. Shew that the six normals which can be drawn from

any point to an ellipsoid lie on a cone of the second degree, three

of whose generating lines are parallel to the axes of the ellipsoid.

38. Find the equations of the right circular cylinders which

circumscribe an ellipsoid.

39. If a right circular cone has three generating lines

mutually at right angles, the semi-vertical angle is tain~^J'2.

40. If one of the principal axes of a cone which stands

on a given base be always parallel to a given right line, the locus

of the vertex is an equilateral hyperbola or a right line according

as the base is a central conic or a parabola.

41. The axis of the right circular cone, vertex at the origin,

which passes through the three lines, whose direction-cosines are

(/j, m^, nj, (/g, 7??2, n^), {\, w^, n^ is normal to the plane

= 0.0,
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44. Shew that, if P, Q, B be extremities of three conjugate

diameters of a conicoid, the conic in which the plane PQR cuts

the surface contains an infinite number of sets of three conjugate

extremities, which are at the angular points of maximum triangles

inscribed in the conic PQR.

45. Shew that, if the feet of three of the six normals drawn
from any point to an ellipsoid lie on the plane Ix + my + nz + p = Of

the feet of the other three will be on the plane

ax hy cz \ ^

-J-+
^ + = 0,

I m n p
the equation of the ellij)soid being ax^ + hy^ + cz' = 1.

46. Prove that the locus of a point with which as a centre of

conical projection, a given conic on a given plane may be projected

into a circle on another given plane, is a plane conic.

47. If C be the centre of a conicoid, and P (Q) denote the

perpendicular from P on tlie polar plane of Q ; then will

P(Q) C{Q)
Q{P)- C{Fy

48. The locus of a point such that the sum of the squares of

its normal distances from a given ellipsoid is constant, is a co-axial

ellipsoid.

49. If a line cut two similar and co- axial ellipsoids in P, P';

Q, Q'
;

prove that the tangent plane to the former at P, P\
meet those to the latter at Q or Q' in pairs of parallel lines equi-

distant respectively from Q or Q'.

50. A chord of a quadric is intersected by the normal at a
given point of the surface, the product of the tangents of the

angles subtended at the point by the two segments of the chord
being invariable. Prove that, being the given point and P, P*

the intersections of the normal with two such chords in perpendi-

cular normal planes, the sum of the reciprocals of OP, 0P\ is

invariable.
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Plane Sections of Conicoids.

114. We have seen [Art. 51] that all plane sections of a

conicoid are conies, and also [Art. 61] that all parallel

sections are similar conies. Since ellipses, parabolas, and
hyperbolas are orthogonally projected into ellipses, parabolas,

and hyperbolas respectively, we can find whether the curve

of intersection of a conicoid and a plane is an ellipse,

parabola, or hyperbola, by finding the equation of the pro-

jection of the section on one of the co-ordinate planes.

For example, to find the nature of plane sections of a

paraboloid.

The plane Ix + my + ?zj + p = cuts the paraboloid

ax^ + hif -f 2j = 0, in a curve through which the cylinder

a {my + 7?^ + i^)' + hlY + 2Z'^ =

passes. The plane x — 0, which is perpendicular to the

generating lines of the cylinder, cuts it in the conic whose
equations are a; = 0, a {my -{ nz -{ pf + hFif' -f Wz = ; and
this conic is the projection of the section on the plane ^=0.
If n = 0, the projection will be a parabola; but, if n be not

zero, the projection will be an ellipse or hyperbola accord-

ing as aif {aiif + hl^) - a^m^r^ is positive or negative, or aWn^
positive or negative, that is, according as the surface is an
elliptic or hyperbolic paraboloid.
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Hence all sections of a paraboloid which are parallel

to the axis of the surface are parabolas ; all other sections of

an elliptic paraboloid are ellipses, and of a hyperbolic

paraboloid are hyperbolas.

Ex. 1. Find the condition that the section of aa;^ + Z)?/^ + C2'^ = 1 by the

plane lx + my + nz+p = may be a parabola.

Ans. - + -T- + - = 0.
a b c

Ex. 2. Shew that any tangent plane to the asymptotic cone of a conicoid

meets the conicoid in two parallel straight lines.

115. To find the axes and area of any central plane

section of an ellipsoid.

Let the equation of the ellipsoid be
2 2 2—\-~ A— = 1
a c

and let the equation of the plane be

Ix + my \-nz = (i).

Every semi-diameter of the surface whose length is r is a

generating line of the cone whose equation is [p. 55, Ex. 5]

x"&-')-"&-?) -'G'-J)-" »
This cone will, for all values of r, be cut by the plane in two
straight lines which lie along equal diameters of the section

;

and, when r is equal to either semi-axis of the section, these

equal diameters will coincide. That is, the plane (i) will

touch the cone (ii) when r is equal to either semi-axis of

the section of the ellipsoid by the plane. The condition

of tangency gives

"^1 _ 1^ 1 1
~ ^

ahc ahc
.(iv),

'^{dH'+bW+c'n') p
where r^, r^ are the semi-axes of the section, and p is the

perpendicular on the parallel tangent plane.

S. s. G.
"^
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From (iv) wc see that the area of the section is equal to

Trabc

116. To find the area of any plane section of an ellipsoid.

Take for co-ordinate planes three conjugate planes of

which ^ = is parallel to the given plane; then the equations

of the surface and of the given plane will be respectively

of the forms

a^ \i^ z^
-2 + -7T2+ -2 = lj and<2r = /j.

a c

The cylinder whose equation is

2 '2 72

a"^b"^c"' '

passes through the curve of intersection of the surface and the

plane ; and the area of the section of this cylinder by ^ = k is

Tra'b' sin v (l 72

V being the angle XOY. The area of the section of the

ellipsoid hy z = is irab' sin v.

Hence, if A be the required area, and AQhe the area of

the parallel central section, we have

Now the tangent plane at (0, 0, c) is z = c ; therefore the

perpendicular distances of the given plane and of the parallel

tangent plane from the centre are in the ratio of k : c.

Hence A =A,(l-Q (i),

where p and^p^ are the perpendicular distances of the given

plane and of the parallel tangent plane from the centre.

This gives the relation between the area of any section

and of the parallel central section ; and w^e have found

in Art. 115, the area of any central section.
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Hence the area of the sectiou of the ellipsoid whose
equation, referred to its principal axes, is

x"^ y^ z^ _.
a b c

made by the plane whose equation is

lx-\- my -\- nz =p,
irabc / P^ \'^

V {aH' + Jfm' + cV) V ~ aT+h'm' + enV
'

^"""^ ^0
" V(aT + 6WT?/?) '^^'*' •'•^^-''

and p^'^ = a'r + b'm' + cV [Ai't. 91].

Ex. 1. To find the area of the section of a paraboloid by any plane.
Let the equation of the paraboloid be ax^ + by^ + 2z— 0, and let the equa-

tion of the section be lx + my + nz+p = 0. The projection of the section on
the plane 2= is the conic

2
ax'^ + by^— {Lx + my+p) = 0,

The area of the projection is

n^Jab\a &

and. therefore [Art. 31] the area of the section is

TT U2 m2 ^ )

n^Jab^a, b

X^ 7/^ Z^
Ex. 2. To find the area of the section of the cone—[- 4- + — = by the

a b c

plane lx + jny + nz - p.

x^ y^' z-
The area of the section of —r + 77- + 7 = 1 t)y the given plane is

ak bk ck ^ '^

IT s/»bck^ (
^

p"^
1-

yj (
kal- + kbm^ + kcnP) \ kal^ + kbruP + kcn^)

'

If we put A;= the surface becomes the cone. The required area is therefore

irp^ sjabc

Ex. 3. If central plane sections of an ellipsoid be of constant area, their

planes touch a cone of the second degree.

7—2
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/

Let the area be -
, - , and let the equation of one of the planes be
a (

Then we have
Ix+my + nz — O.

irahc irabc

or j,H^- + b'^m^ + c^n'^=d?;

This shews that the plane lx +my + nz = always touches the cone

y'x" y z'' _
4— ^— 4- =0.

117. We can find, by the method of Art. 11.5, the area

of a central plane section of the surface whose equation is

ax^ + hy^ + cz^ + 2/3/s + "Igzx + thxy = 1.

For the semi-diameters of length r are generating lines of

the cone whose equation is

[a - i) ^^{l- p) f + (c - i) ^^ + 2/yz + ^zx + tlixy = 0.

When r is equal to either semi-axis of the section of the

surface by the plane

Ix + ffiy + ws = 0,

the plane will be a tangent plane of the cone. The condition

of tangency gives, for the determination of the semi-axes, the

equation

a 5 h. 9f'
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118. To find the directions of the axes of any central

section of a conicoid.

Let the equation of the surface be

ax^ + hy^ + cz^ + ^fyz + ^gzx + llixy = 1,

and let the equation of the plane be

Ix + Tfiy + n^ = 0.

Then, if P be any point on an axis of the section, the line

joining P to the centre of the section will be perpendicular

to the polar line of P in the plane of the section.

Hence, if P be (f, 77, f), and if the direction-cosines of

the polar line be X, yb, v, we have

Xf + ^7; + ^?=0 (i).

Also, since the polar line is on both the planes

x{a^-\-h7^+gi;)-Vyili^+h^-^f^) + z{gi-\-fri + cQ = l,

and Ix + my + nz = 0,

it is perpendicular to the normals to those planes ; hence

X(a^ + hrj+gO + H'Qi^-^h-^f^) + Hg^+fv + c^) = 0...(u),

and Xl + jJLin -\-vn = (iii).

Eliminating \, jjl, v from the equations (i), (ii), (iii), we

have = 0.

a^-\-hrj+g^, h^ + hrj+fi, gS + fy + cl^

I, m, n

Hence the required axes are the lines in which the given

plane cuts the cone whose equation is

X, y, z

ax + hy + gz, hx -\-hy -hfz, gx +fy + cz

I, m, n

= 0.

119. To find the angle between the asymptotes of any
plane section of a conicoid.

Let 6 be the angle between the asymptotes of the plane

section, and let the semi-axes of the section be a, /3.
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Then tan -^
-
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120. If two conicoids have one plane section in common
all their^ other points of intersection lie on another plane.

Let the equations of the common plane section be

ax^ + %^ -t- 2hxj/ + 2ux + 2vy + c = 0, = 0.

The most general equations of two conicoids which pass

through this conic are

ax^ + by"^ + 2hxT/ + 2ux + 2vy + c + z (Jx + my + nz +^) = 0,

and

ax^ + hy^ + 2hxy + 2ux + 2vy + c -{ z {I'x + my 4- nz + ^') = 0.

It is clear that all points which are on both surfaces, and
for which z is not zero, are on the plane given by the

equation

Ix 4- my + nz +p = Tx + vi'y + nz H- p' ;

this proves the proposition.

Circular Sections.

121. To find the circular sections of an ellipsoid.

Since parallel sections are similar, we need only consider

the sections through the centre.

Now all the semi-diameters of the ellipsoid which are of

length r are generating lines of the cone whose equation is

SC rV ' "^ W rV ' \c' r

If there be a circular section of radius r, an infinite

number of generating lines of the cone will lie on the plane

of the section ; hence the cone must be two planes. This
will only be the case when r is equal to a, or 6, or c.

If r = a, the two planes pass through the axis of x, their

equation being

^i?-y+^'fi-a-)=° «•
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The equations of the other pairs of planes are respectively

^'&-y+-ii-y=o (")'

Of these three pairs of planes, two are imaginary. For,

11 11
if a, h, c be in order of maofnitude, yr, 5 and -o 5 have

the same sign, and therefore the planes (i) are imaginary
;

for a similar reason the planes (iii) are imaginary. Hence,
the only real central circular sections of an ellipsoid pass

through the mean axis, and their equations are

/^-S'^A'-a <')X
V

Since all parallel sections are similar, there are two
systems of planes which cut the ellipsoid in circles, namely
planes parallel to those given by the equation (iv).

If 5 = c the two planes which give circular sections are

coincident.

122. If the surface be an hyperboloid of one sheet, we
must change the sign of c^ in the equations of the last

Article. In this case the planes which give the real circular

sections are those given by equations (i), a being supposed to

be greater than h.

If the surface be an hyperboloid of two sheets, we must
change the signs of If and c\ In this case the planes which
give the real circular sections are those given by equation
(ii), h being supposed to be numerically greater than c.

123. If a series of planes be drawn parallel to either

of the central circular sections of an ellipsoid, these planes

will cut the surface in circles which become smaller and
smaller as the planes are drawn farther and farther from
the centre ; and, when the plane is drawn so as to touch the

ellipsoid, the circle will be indefinitely small.
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Def. The point of contact of a tangent plane whicli cuts

a surface in a point-circle is called an umhilic.

124. Any two circular sections of opposite systems are on

a sphere.

The circular sections of the ellipsoid are parallel to the

planes whose equations are

Hence ^^g- 1,) +.^(^1-1) +:P = 0,

are the equations of the planes of any two circular sections of

opposite systems.

The equation

is, for all values of X, the equation of a conicoid which passes

through the two circular sections ; and, if X = 1, the equation

represents a sphere ; which proves the proposition.

125. We can find the circular sections of the paraboloid

a^ h '"^'

by writing the equation in the form

l(.= +y + ,^_2a.)+y(l-^)-;;=0.^

It is clear that the two planes given by the equation

cut the paraboloid where they cut the sphere whose equation

is x^ -\-
y^ \- z^ — laz = ;
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and, since the planes must cut the sphere in circles, they will

cut the paraboloid in circles.

We can shew in a similar manner that the planes given

by the equation
'1 1\ ^

x" - -
,a bJ

will give circular sections of the paraboloid.

Of the two pairs of planes given by the equations

«•e-D-^»."<'='•(^')-^»
one will be real, if a and h are of the same sign ; but both

pairs of planes will be imaginary if a and h are of different

signs, so that there are no circular sections of a hyperbolic

paraboloid.*

Ex. 1. Shew that the conicoid whose equation is

has the same cyclic planes for all values of X.

Ex. 2. Shew that no two parallel circular sections of a conicoid, which

is not a surface of revolution, are on a sphere.

Ex. 3. Find the circular sections of the conicoid whose equation is

ax^' + lif + cz^ + 2/?/z + Icjzx + Ihxij r= 1.

All semi-diameters which are of length r are generating lines of the cone

whose equation is

(«--^)^'+ (^-72)^'+ ^c-^')s2 + 2/^z+ 2^za: + 2/iX7/ = 0...(i).

If therefore r is the radius of a circular section, the cone must be two
planes. The condition for this is

^

A.
1

a—-,

r
•2 '

h, ^-^'

/»

9 1=0.

/

.(ii).

c-

Tf we substitute in (i) any one of the roots of the equation (ii), we shall

obtain the equation of the corresponding planes of circular section.

Ex. 4. Find the real circular sections of the following surfaces

(i) 4x'' + 2i/ + z^ + Syz + zx= l,

(ii) 2x2 + 5t/2-322 + 4xi/= l.

* This is not strictly true: a section through any generating line by a

plane parallel to the axis of the surface is a circle of infinite radius.
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Ans. (i) planes parallel to

(ii) planes parallel to

(cc + 2?/)2-4z^= 0.

Ex. 5. Find the conditions that the plane

lx+ my + nz=0,
may cut the conicoid

ax^+ by^ + cz- + 2fyz + 2gzx + 21ixy- 1

in a circle.

As in Ex. 3, the equation

must, for some value of y, be two planes of which the given plane is one.
The equation must therefore be the same as

By comparing the coefficients of yz, zx, xy we have

and two similar equations.

Hence the required conditions are

h'n? + cvi? - 2fmn _ cl^ + an^ - 2gnl _ am^ + 11? - 2hlm

126. We will conclude this chapter by the solution of

two examples.

Ex. 1. With a fixed point on a conicoid as vertex, and plane sections of
the conicoid for bases, cones are described; shew that the cones are cut by any
plane parallel to the tangent plane at in a system of similar conies.

(Chasles.)

The equation of a conicoid, referred to three conjugate diameters as axes,

is of the form
X^ ifi 2^

Hence the equation, referred to parallel axes through the extremity of one of

the diameters, will be

^ y^ z^ 2z^_

a^ b^ c'-^ c

This we will take for the equation of the surface, the common vertex of the
cones being the origin. Let lx + my + nz= l be the equation of any j)lane

section ; then the corresponding cone will be
3.2 y2 ^2 2z— + f;, + -, + — (Zx + WW + nz) = 0.
o-i b^ c' c

^ ''
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The section of this cone by the plane z = k ia clearly similar to the conic

a^ b-

"which proves the ]proposition.

Ex. 2. With a fixed point on a conicoid for vertex, and a plane section

of the conicoid for base, a cone is described ; sheiv (i) that if the cone have
three perpendicular generating lines, the plane base loill meet the normal at O
in a fixed point ; and (ii) that if the normal at O be an axis of the cone, the

plane base will meet the tangent plane at in a fixed straight line.

The most general equation of a conicoid, when the origin is on the
suiface and the plane 2 = is the tangent plane at the origin, is

ax^ + 6?/- + c^^ + '^fyz + Igzx + 2hxy + 2^;= 0.

The equation of the cone whose vertex is the origin, and which passes
through the jpoints of intersection of the conicoid and the plane

lx-\-my-\-nz= l

is ax^+ li/+ cz^ + Ifyz + 2gzx + 2hxy -\-2z{lx + my + nz) = 0.

Now the condition that the cone may have three perpendicular generating
lines is

a + h + c + 2n=0 [Art. 109].

This shews that the intercept on the axis of z is constant ; which proves
(i). The conditions that the axis of z may be an axis of the cone are

[See Art. fiO] g + l= 0, and/+m= 0. Hence the plane meets the axes of x
and y in fixed points; which proves (ii).

Examples on Chapter V,

1. Shew that the area of the section of an ellipsoid, by
a plane which passes through, the extremities of three conjugate

diameters, is in a constant ratio to the area of the parallel central

section.

2. Given the sum of the squares of the axes of a plane

central section of a conicoid, find the cone generated by a normal
to its plane.

3. Shev/ that a plane which cuts off a constant volume from
a cone envelopes a conicoid of which the cone is the asymptotic

cone.
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4. Shew tliat the axes of plane sections of the conicoid

x" y' z' ,

a c

which pass through the line

X y s

I I 7)i~ n

lie on the cone whose equation is

x^\y zj\h' c'J y\z x,-'-^Ki-a4G-;)&-»--
5. If through a given point {x^, y^, z^ lines be drawn each

of which is an axis of some plane section of ax^ + hy' + cz^ = 1,

buch lines describe the cone

' x-x^ 'y-y^ ^ ' z-z^

6. If the area of the section of

2 2

4- + - = 2a;
c

be constant and equal to a^, the locus of the centre is

7. If a conic section, whose plane is perpendicular to a gene-

rator of a cone, be a circle; the corresponding projection of the

reciprocal cone is a parabola.

8. Shew that the principal semi-axes of the normal section

of the cylinder which envelopes h^c^x^ + c^a^y^ + a^¥z' - d^b^c^y and
whose generating lines are parallel to

X _y _z

are the values of r given by

lib n A
+ T^ + -^ i = 0.

a'-r' b'-r^ c'-r'
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9. Shew that the section of

2^' _ ^' - ?^
P ~ ? ~

"a

hy the ])hine Ix + my + w;:; = is a rectangular hyperbola, if

10. Shew that all plane sections of

2 2X y— = 3
a 6

v/hich are rectangular hyperbolas, and which pass through the
point (a, /3, y), touch the cone

(«-")' ('J-PY A^-yY
a a —

11. Find the locus of the vertices of all parabolic sections

of a paraboloid, whose planes are at the same distance from its

axis.

1 2. Shew that, if the plane Ix + my + nz = p cut the surface

ax' + hy^ + ca;^ = 1 in a parabola, the co-ordinates of the vertex

of the parabola satisfy the equation

ax

T (1 2\,L^(1_2),«(1 l) = o.
\6 c) Til \c OjJ n \a bj

13. The area of the section of (ahcfyh\xyzy = 1 by the plane

which pastes through the extremities of its principal axes is

27r , /a + h + c

3^3

. /a ¥ b + G\

14. A cone is described with vertex {/, g, h) and base the

section of the surface ax^ + by^ + cz^ = 1 made by the plane x=0
;

shew that the equation of the plane in which this cone again meets

the surface is

X {af + Iff + c7i^ - 1) = 1f{nfx + Igy ^ chz - 1).
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15. Shew tliat the foci of all parabolic sections of

c2y
a

lie on the surface

2/^ z^\ (if _
'z\ ah fif z^^

a b a bj 4: \a^ b^J

16. Circles are described on a series of parallel chords of a

fixed circle whose planes are inclined at a constant angle to the

plane of the fixed circle.

Shew that they trace out an ellipsoid, the square on whose
mean axis is an arithmetic mean between the squares on the other

two axes.

17. Shew that if the squares of the axes of an ellipsoid

are in arithmetical progression the umbilici lie on the central

circular sections ; if they are in harmonic progression the circular

sections are at right angles ; if they are in geometrical progression

the tangent planes at the umbilici touch the sphere through the

central circular sections.

18. Points on an ellipsoid such that the product of their

distances from the two central circular sections is constant lie on
the intersection of the ellipsoid with a sphere.

19. If the diameter of the sphere which passes through two
circular sections of an ellipsoid be equal to its mean diameter, the

distances of the planes from the centre are in a constant ratio.

20. A sphere of constant radius cuts an ellipsoid in plane

curves ; find the surface generated by their line of intersection.

21. The hyperboloid x^ + if — '^ tan^ o. = a? is built uj) of thin

circular discs of cardboard, strung by their centres on a straight

wire. Prove that, if the wire be turned about the origin into the

direction (?, m, w), the planes of the discs being kept parallel

to their original direction, the equation of the surface will be

(^ix — Izf + {ny — mzf = n^ (z^ tan^ a + a^).

22. If a series of parallel plane sections of an ellipsoid be

taken, and on any sections as base a right cylinder be erected,

shew that the other plane section, in which it meets the ellijjsoid,

will meet the pla.ne of the base in a straight line whose locus will

be a diametral plane of the ellipsoid.
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23. Any number of similar and similarly situated conies,

which are on a plane, are the stereographic projections of plane

sections of some conicoid.

24. The tangent plane at an umbilicus meets any enveloping

cone in a conic of which the umbilicus is a focus and the inter-

section of the plane of contact and the tangent plane a directrix.

25. The quadric ax^ + hy^ ^-cz^ =\ is turned about its centre

until it touches a'x' + h'if ¥ c'z^ = \ along a plane section. Find
the equation to this plane section referred to the axes of either

of the quadrics, and shew that its area is

a + h-\- c — a —h' — g'

abc - ab'c'



CHAPTER VI.

Generating Lines of Conicoids.

127. In cones and cylinders we have met with examples

of curved surfaces on which straight lines can be drawn
which will coincide with the surface throughout their entire

length.

We shall in the present chapter shew that hyperboloids

of one sheet, and hyperbolic paraboloids, can be generated

by the motion of a straight line ; and we shall investigate

properties of those surfaces connected with the straight lines

which lie upon them.

Def. a surface through every point of which a straight

line can be drawn so as to lie entirely on the surface, is

called a ruled surface; and the straight lines which lie upon
it are called generating lines.

A ruled surface on which consecutive generating lines

intersect, is called a developable surface.

A ruled surface on which consecutive generating lines do

not intersect, is called a skew surface.

128, To find where the straight line, whose equations are

I m n
'

meets the surface whose equation is F {x, y, z) = 0, we must
substitute a + /r, y8 + mr, and 7 + 72r for x, y, z respectively,

and we obtain the equation F {a + Ir, ^ + 7nr, 7 + nr) = 0.

s. s. G. 8
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If the surface is of the k^^ degree, the equation for finding

r is of the k^^ degree ; hence any straight line meets a surface

of the k^'-^ degree in k points.

If, however, for any particular straight line, all the co-

efficients in the equation for r are zero, that equation will be
satisfied for all values of r ; and therefore every point on that

straight line will be on the surface. Since there are ^ + 1

terms in the equation of the k^^ degree, it follows that

k -h 1 conditions must be satisfied in order that a straight line

may lie entirely on a surface of the ^•'^ degree.

Now the general equations of a straight line contain four
independent constants, and therefore a straight line can be
made to satisfy four conditions, and no more.

It follows therefore, that, if the degree of a surface be
higher than the third, no straight line will, in general, lie

altogether on the surface. For special forms of the equations

of the fourth, or higher orders, we may however have
generating lines ; for example, the line whose equations are

y = mx and z = ni^ will, for all values of ???, lie entirely on the

surface whose equation is zx^ = y^.

If the equation of a surface be of the third degree, the

number of conditions to be satisfied is equal to the number
of constants in the general equations of a straight line.

Hence the conditions can be satisfied, and there will be a

finite number of solutions. The actual number of straight

lines (real or imaginary) wdiioh lie on any cubic surface is 27.

[See Cambridge and Dublin Math. Journal, Vol. IV.]

The number of conditions to be satisfied, in order that a
straight line may lie entirely on a conicoid, is three. Since

the number of conditions is less than the number of constants

in the general equations of a straight line, the conditions can
be satisfied in an infinite number of ways, so that there are

an infinite number of generating lines on a conicoid; these

generating lines may however all be imaginary, as is

obviously the case when the surface is an ellipsoid.

129. A generating line on any surface touches the

surface at any point of its length, for it passes through a
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point of the surface indefinitely near to 0; hence the tangent

plane to any surface at a point through which a generating

line passes will contain that generating line.

130. The section of a conicoid by the tangent plane at

any point through which a generating line passes, will be a

conic of which the generator forms a part ; the conic must
therefore be two straight lines.

Hence, through any point on a generating line of a

conicoid another generating line passes, and they are both in

the tangent plane at the point.

The two generating lines in which the tangent plane to a

conicoid intersects the surface are coincident when the conicoid

is a cone or a cylinder.

131. Since any plane section of a conicoid is a conic, any
plane which passes through a generating line of a conicoid

will cut the surface in another generating line ; and both
generating lines are in the tangent plane at their point of

intersection. Hence, ani/ plane through a generating line of
a conicoid touches the surface, its point of contact being the

point of intersection of the tw^o generating lines which lie

upon it.

132. To find ivhich of the conicoids are rided surfaces.

If a conicoid have one generating line upon it, and we
draw a plane through that generating line and any point

P of the surface, this plane will cut the surface in another

generating line, which must pass through P.
Hence, if there be a single generating line on a conicoid,

there will be one, and therefore by Art. 13 0^ two generating

lines, through every point on the surface.

We can therefore at once determine whether a conicoid

is or is not a ruled surface, by finding the nature of the inter-

section of the surface by the tangent plane at any particular

point.

The equation of the tangent plane at the point (a, 0, 0) of

x^ v^ z^
the conicoid -5+'7-2+-i = l is x — a\ this meets the surface

a^~ h""- & '

g_2
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in straight lines whose projection on the plane x = are
7/' JZ

given by the equation ± yr, + -2 = 0. These lines are clearly
c

real when the surface is an hyperboloid of one sheet, and
imaginary when the surface is an ellipsoid, or an hyperboloid

of two sheets.

Hence the hyperboloid of one sheet is a ruled surface.

The hyperbolic paraboloid is a particular case of the

hyperboloid of one sheet ; hence the hyperbolic paraboloid is

also a ruled surface.

This can be proved at once from the equation of the

paraboloid. For, the tangent plane at the origin is 2; = 0, and
this meets the paraboloid ax^ + bif + 22 = in the straight

lines given by the equations ax^ + bif =0, z = ; the lines

are clearly real when a and b have different signs, and are

imaginary when a and 6 have the same sign.

Hence an hyperboloid of one sheet (including an hyper-

bolic paraboloid as a particular case) is the only ruled conicoid

in addition to a cone, a cylinder, and a pair of planes.

133. To shew that there are two systems of generating

lines on an hyperboloid of one sheet.

Since any plane meets any straight line, the tangent

plane at any point P on an hyperboloid of one sheet will

meet all the generating lines of the surface, and the points

of intersection will be on the surface. But the tangent

plane cuts the surface in the two generating lines through

P; hence every generating line of the hyperboloid must
intersect one or other of the two generators PA, PB which
pass through any point P on the surface.

Now no two of the generating lines which meet the same
generator can themselves intersect, for otherwise there would
be three generating lines in a plane, which is impossible,

since every plane section is a conic.

Hence there are two systems of generating lines, which
are such that all the members of one system intersect PB,
but do not themselves intersect ; and all the members of the
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other system intersect PA, but do not themselves intersect.

Since the position of P is arbitrary it follows that every

member of one of the two systems of generating lines meets

every member of the other system.

134. If a straight line intersect a conicoid in ^/^reg points,

it will entirely coincide with the surface ; and hence, to have

a generating line of a conicoid given, is equivalent to having

three points given.

To have three non-intersecting generating lines given is

therefore equivalent to having nine points given, so that

[Art. 50] three non-intersecting generators are sufficient to

determine the conicoid on which they lie.

If a Ime meet three non -intersecting lines, it will meet
the conicoid of which they are generators in three points,

namely in the three points in which it intersects the three

lines ; and hence it must itself be a generator of the surface.

Hence, the straight lines which intersect three fixed non-

intersecting straight lines are generators of the same system

of a conicoid, and the three fixed lines are generators of the

opposite system of the same conicoid. [See Art. 49, Ex. 2]

135. Since any line which meets three non-intersecting

straight lines is a generating line of the conicoid on which

they lie, it follows that the only lines which meet the three

lines and which also meet a fourth given straight line are

the generators of the surface, of the system opposite to that

defined by the given lines, which pass through the points

where the conicoid is met by the fourth given straight line.

But the fourth straio-ht line will meet the conicoid in two
points only, unless it be itself a generator of the surface.

Hence two straight lines, and two only, will, in general,

meet each of four given non-intersecting straight lines ; but if

the four given straight lines are all generators of the same
system of a conicoid, then an infinite number of straight

lines will meet the four, which will all be generators of the

opposite system of the same conicoid.

Ex. 1. Two planes are drawn, one through each of two intersecting

generating lines of a conicoid ; shew that the planes meet the surface in two
other intersecting generating lines.
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Ex. 2. Shew that the plane through the centre of a conicoid and any
generating line, will cut the surface in a parallel generating line, and will

touch the asymptotic cone.

Ex. 3. A conicoid is described to pass through two non-intersecting given

lines and to touch a given plane. Shew that the locus of the point of contact

is a straight line.

Let the given lines meet the given plane in the points A , B respectively.

Then, the given plane will cut the surface in two generating lines, one
of which will intersect both the given lines; hence, since the points of

intersection must be A and B, the point of contact must be on the

line AB.

Ex. 4. The lines through the angular points of a tetrahedron perpen-

dicular to the opposite faces are generators of the same system of a
conicoid.

Let A A', BB\ CC, DD' be the four perpendiculars, and let a, /S, y, S be
the orthocentres of the faces opposite to A, B, C, D respectively. Then, it is

easy to prove that the lines through a, /3, 7, 5 parallel respectively to

AA', BB', CC\ DD' will meet all the four perpendiculars. Since the four

perpendiculars are met by more than two straight lines, they are generators

of the same system of a conicoid; and the four parallel lines through
a, j3, 7, 5 are generators of the opposite system of the same conicoid.

Ex. 5. If a rectilineal quadrilateral ABCD be traced on a conicoid, the

centre of the surface is on the straight line which passes through the middle
points of the diagonals AC, BD.

The planes BAD, BCD are the tangent planes at ^, C respectively, and
BD is their line of intersection ; hence the centre of the conicoid is on the

plane through BD and the middle point of AC. Similarly the centre is on the

plane through AG and the middle point of BD.

Ex. 6. If a rectilineal hexagon be traced on a conicoid, the three lines

joining opposite vertices will meet in a point, and the three lines of inter-

section of the tangent planes at opposite vertices lie in a plane. [Dandelin.]

Let ABCDEF be the hexagon. Intersecting generators of a conicoid are

of different systems; therefore AB, CD, EF are of one system, and BC, DE,
FA of the opposite system ; so that opposite sides of the hexagon are of

different systems, and therefore will intersect. Each of the diagonals

AD, BE, CF is the line of intersection of two of the planes through pairs of

opposite sides; therefore AD, BE, CF meet in a point, namely in the point

of intersection of the three planes through pairs of opposite sides.

Let X be the point of intersection of AB and DE, Y the point of inter-

section of BC and EF, and Z of CD and FA. The tangent planes at A, D,

namely the planes FAB, CDE, intersect in the line XZ ; the tangent planes

at B, E intersect in the line XY; and the tangent planes at C, F intersect in

the line YZ. Hence the three lines of intersection of the tangent planes at

opposite vertices lie in the plane .X YZ.

Ex. 7. Four fixed generators of the same system cut all generators

of the opposite system in a range of constant cross-ratio. [Chasles.]

Let any three generators of the opposite system cut the fixed generators in
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the points A,B,C,D', A', B', C, D' and A", B", C", D" respectively. Then,
the four planes through A"B"C"D" and the fixed generators cut all other
straight lines in a range of constant cross-ratio [Art. 36] ; we therefore have

{A'B'G'D'} = {ABCB}.

Ex. 8. The Hnes joining corresponding points of two homographic
systems, on two given straight lines, are generating hnes of a conicoid.

136. To find the angle between the two generating lines

through any point of an hyperholoid.

The section of an hyperholoid of one sheet hy the
tangent plane at any point is similar and similarly situated to

the parallel central section. Hence the generating lines

through any point are parallel to the asymptotes of the
parallel central section. Let the equation of the surface be

and let /, g, h be the co-ordinates of the point P through
which the generating lines pass.

Let a^, fi- be the squares of the axes of the central section

which is parallel to the tangent plane at P, and let be the
angle between the generating lines through P.

e , s
Then tan^=\/-l-,

^ a

and therefore

tan(9 = 2\/'^-2^^2.

Now the sum of the squares of three conjugate semi-
diameters is constant, and also the parallelepiped of which
they are conterminous edges. Hence

a'-¥^'+OP' = a' + b'-c\

and a^p = J — 1 . ahc.

Hence we have

^''^'=^p{a' + V-,?-OF')'

137. We can write the equation of an hyperholoid of one
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sheet in such a way as to shew at once the existence of

generating lines. For, the equation
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This is seen at once if we substitute in the equation of

the hyperboloid.

The two generating lines through the point P are the

lines of intersection of the surface and the tangent plane at

P. Now, the equation of the tangent plane at {9, (f>)
is

- cos 6 sec (b + V sin 9 sec (h tan 6 = 1;
a ^ ^ c

hence the tangent plane meets the plane 2: = in the

line whose equations are

- COS ^ + T^sin ^ = cos<f>, z = (i).

a

If this line meet the section of the surface by 2^ = in

the points A, B, whose eccentric angles are a, (3 resj^ectively,

we have from (i)

or a = 6 {-
(f),

Q^idi P = 6 —
(f>

(ii).

Now AP, BP are the generators through P ; hence from
(ij), ^ + is constant for all points on the generator AP, and
6 — ^ is constant for all points on the generator BP.

The direction-cosines of AP are proportional to

a (cos a — cos ^ sec ^), 6 (sin a — sin ^ sec 0), - c tan ^ ;

or proportional to

cos (6 + (f))
cos

(f)
— cos d

J
sin (6 + cf)) cos cf)

— sin

sm 9 sm 9
or to a sin {6 + <j6), —h cos {9 -{- (j)), c;

hence the equations of AP are

X — a cos 9 sec ^ _y — h sin 9 sec cf) _z — c tan (^

a sin (9 + (j>) —b cos {9 -{ <^) c

Similarly the equations of BP are

X —a cos 9 sec 4* _y — 6 sin ^ sec
(f>

z — c tan (/>

a sin {9 — (j)) — 6 cos (^ — </>)

"~ — c
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Cor. The equations of the generators, through the point

on the principal elliptic section whose eccentric angle is 0,

are

x— acosd _y — hsmd _ z

a sin —h cos 6 ~ c'

These equations may also be obtained as follows :

The line whose equations are

{c— a cos 6 _y — h sin _z _
I 111 n '

will meet the surface, where

(a cos 6 + Iry (b sin 6 + mrf _ r?V _
a'

"^
¥ ^ ~

Hence, in order that the straight line may be a generating

line, we must have

a'
"^

b' c'
~ '

, I cos 6 m sin 6 ^
and 1 ?— = 0.

a

Whence

I m n

a b c

sin 6 —cos6 ± 1
*

The equations of the generators are therefore

x — a cos 6 _y — b sin 6 z

a sin 6 —b cos d ~ c'

139. To find the equations of the generating lines

through any point of a hyperbolic paraboloid.

Let the equation of the paraboloid be

2 2

d' b'
~ "''
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Let the equations of any line he

I Til n
'

The points of intersection of the line and the surface are

given by the equation

a- V

Hence, in order that the straight line may be a generating

line, we must have

-:2--T7 = (1),

1 2 ?72/3

~~b''a'
n = (ii),

and ^ - C - 27= (iii).

The equation (iii) is satisfied if (ot, j3, 7) be any point on the

surface ; from (i) we have - = ± -7- ; and, substituting^ in (ii),

a o \ /

we obtain

Z _ m _ n

a + b a _ B
'

a

Hence the equations of the two generating lines through
the point (a, yS, 7) are

x — OL_y — P_z — 'y

"^~Tr"^r^ '^'''^•

-+ ra

It is clear from the above that any generator of the

paraboloid is parallel to one or other of the two planes

- + V- = 0.
a
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Ex. 1. Shew that the projections of the generating lines of an hyper-
boloid on its principal planes are tangents to the principal sections.

The tangent plane at any point P on a principal section is perpendicular
to that section. Hence the jirojection on the principal plane of any hne in
the tangent plane at F is the tangent line which is in the principal plane.
This proves the proposition, since the generating lines through P are in the
tangent plane at P.

Ex. 2, Find the locus of the point of intersection of perpendicular
generators of an hyperboloid of one sheet.

If the generating lines at any point P are at right angles, the parallel
central section is a rectangular hyperbola, and therefore the sum of the
squares of its axes is zero. But the sum of the squares of three conjugate
semi-diameters of the hyperboloid is constant and equal to a^ + 6^ _ c-. Hence
OP-= a' + b''^-C'; so that the points are all on a sphere.

This is the result we should obtain by putting tan ^ = qo in the result of
Art. 136. We could also find the locus by using the equations of Art. 138.

Ex. 3, Find the angle between the generating lines at any point of

a hyperbolic paraboloid.

The result is obtained at once from equations (iv), Art. 139. The gene-
rators are at right angles, if

a2_^2 + ^"_P 0, orif27 + a2_52 = 0.

Thus generators which are at right angles meet on the plane z = ^[b' - a-).

Ex. 4. A line moves so as always to intersect three given straight lines

which are all parallel to the same plane : shew that it generates a hyperbolic
paraboloid.

Ex. 5. A line moves so as always to intersect two given straight lines

and to be parallel to a given plane : shew that it generates a hyjoerbolic

paraboloid.

Ex. 6. AB and CD are two finite non-intersecting straight lines; shew
that the lines which divide AB and CD in the same ratio are generators of
one system of a hyperbolic paraboloid, and that the lines which divide AC
and BD in the same ratio are generators of the opposite system of the same
paraboloid.

Examples on Chapter YI.

1. A straight line revolves about a fixed straight line, find

the surface generated. '^/.'^^h ^ -H y\^ -^ U'l" z

2. If four non-intersecting straight lines "be given, shew that

the four hyperboloids which can be described, one through each

set of three, all puss through two other straight lines.
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3. Find the equation of the conicoid, three of whose generat-

ing lines are x = i), y = a
;
y=^0,z^a; z = 0, x^a. Shew that it

is a surface of revolution, and find the eccentricity of its meridian

section.

4. Find all the straiglit lines w^hich can he drawn entirely-

coinciding (i) with the isurface y^ — z^ = 3a^x; and (ii) with the

surface y'^ — z^ = ia^x.

5. Normals are drawn to an h^'perboloid of one sheet at

every point through which the generators are at right angles

;

prove that the point><, in which the normals intersect any one of

the principal planes, lie in an ellipse.

6. Given any tliree lines, and a fourth line touching the

hyperboloid through the three lines, then will each one of the four

lines touch the hyperboloid through the other three lines.

7. A line is drawn through the centre of ax" + by' + cz" = 1

perpendicular to two parallel generators. Shew that such lines

generate the cone

X- ?/ ;:;-— +;-+- ^ 0.
a c

S. If two generators of an hyperboloid be taken as two of the

axes of co-ordinates shew that the equation of the surface is

of the form
z^ + 2/yz + 2gzx + 2hxy + 2wz = 0.

9. The generators through any point Ii on a ruled quadric

intersect the generators at a fixed point in P and Q. Shew-

that if the ratio OP : OQ is constant, B lies on a plane section of

the quadric which passes through 0.

10. Find the locus of a point on an hyperboloid the genera-

tors through which intercept on two fixed generators portions

wdiose product is constant.

11. If all the generators to an hyperboloid of one sheet be

projected orthogonally on the tangent plane at any point, their

envelope will be an hyperbola.-

12. Find the equation of the locus of the foot of the perpendi-
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cular from the point (a, 0, 0) on the different generating lines

of the surface

^i!^.^^i^l
a' b' c'

13. Prove that the product of the sines of the angles that

any generator makes with the planes of the circular sections is

constant.

14. If CP, CD be conjugate semi-diameters of the principal

elliptic section, and generators through F and U meet in T, prove
that TF' = CD' + c^ TD' = CP' + c\

1 5. If two generators drawn from intersect the principal

ellipse in points P, P\ at the ends of conjugate diameters, then will

16. The angle between the generating lines through the point

{xyz) of the quadric —V— -r — — \ is cos~^ ^^

—

~
^ where \^ X^,

are the roots of the equation

a b c A, — A„

+ ^^f—TT + -. = 0.
a{a-\-X) b {b + X) c{g + X)

17. Shew that the shortest distances between jjeneratins^ lines

of the same system drawn at the extremities of diameters of the

principal elliptic section of the hyperboloid, whose equation is

2 2 2

lie on the surfaces whose equations are

cxy ohz

a? \-'if a' — b^'

18. Prove that in general through two non-intersecting

straight lines two and only two conicoids of revolution can be

described.

19. The locus of points on (cibcjgli) {xijzf — \ at which the

generators are at right angles is the intersection of the surface

"WT-th the sphere

'

«, ^^ g
I

li, h, f (x" + 2/^ + ^') -he ^ ca->t ah ~f' ~ ff - A''.
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20. Having given two generating lines that intersect and two
j)oints on an hyperboloid, shew that the locus of the centre is

another hyperboloid bisecting the straight lines joining the two
points to the intersection of the generators.

21. Shew that the volume of every parallelopiped which
can be placed so that six of its edges lie along six of the generators

of a given hyperboloid of one sheet is the same.

22. A solid hyperboloid has its generators marked on it and
is then drawn in perspective : shew that the points of intersection

of the representatives of consecutive generators of the same system

will lie on an hyperbola.

23. If two points F, Q be taken on the surface

such that the tangent planes at those points are at right angles to

one another, then will the two generating lines through F appear

to be at right angles when seen from Q.

24. If two conicoids have a common generator, two of their

common tangent planes through that generator have the same
point of contact.

25. If AOA', FOB', COC be any three straight lines, the

lines AF, CA' F'C are generators of one system, and A'F\
C'A, FC are generators of the other system, of the same hyper-

boloid.

26. Deduce Pascal's Theorem from Dandelin's Theorem.

[Ex. 6. Art. 135.]

27. If from any point on a hyperbolic paraboloid perpen-

diculars be let fall on all the generators of the surface of the same
system, they will form a cone of the second degree.

28. If from any point on the surface of an hyperboloid of one

sheet perpendiculars be drawn to all the generators of the same
system, they will form a cone of the third degree.

29. The normals to a conicoid, at all points of a generating

line, lie on a hyperbolic paraboloid.

30. In every rectilinear octagon AFCDEFGH which is on

a conicoid, the eight lines of intersection of the tangent planes at

A,D', A, F; G,F; G, D; E, II
-,
E,F\ C, F -,

C, H are all

generators of another conicoid. Also the lines AD, AF, GF, GD,
HE, lie, CF, EB are all generators of another conicoid.
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Systems of Coxicoids. Tangential Equations.

ReCIPKOCATION.

140. Since the general equation of the second degree
contains nine constants, it follows that a conicoid will pass

through any nine points, and that an infinite number of

conicoid s will pass through eight points.

If S = 0, and S' = represent any two conicoids which
pass through eight given points, then the equation

S+\S' = w^ill be of the second degree, and will therefore

represent a conicoid, and it is clear that the conicoid

>S' + XS' = will pass through all points common to >S' = and
S' = 0. Also, by giving a suitable value to X, the conicoid

/S'+X>S' = can be made to pass through any ninth point;

and therefore will represent any conicoid through the eight

given points.

Since the conicoid S+\S' = not only passes through
the eight given points, but also through all points on the
curve of intersection of S=i) and S' = 0, we see that all

conicoids through eight given points have a common curve of
intersection.
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141. Four cones will pass through the curve of inter-

section of two conicoids.

Let the equations of any two conicoids be F^ {x, y, z) =0
and F^ {x, y, z) = 0. The equation of any conicoid througli

their curve of intersection is of the form

F^(x,y,z) + \F^{x,y,z)=0.

The above equation will represent a cone, if

dj + Xo^ , Aj + Xh^
, g^ + Xr/., , u^ + Xu,^ \

= 0.

h^ + Xh^, b^ + Xb^, /i + Vr* ^'i
+ ^^2

91 + ^92 y /l + ^/2 ' ^1 + ^^2 ,
w^ + Xtu^

u^ + Xu^, v^ + Xv^, w^-\-Xw^, d^-\-Xd,^

Since the equation for determining X is of the fourth

degree, four cones, real or imaginary, will pass through the
points of intersection of two conicoids.

142. The vertices of the four cones through the curve of
intersection of tivo conicoids are the angular j^oints of a
tetrahedron which is self-polar with respect to any conicoid

luhich passes through that curve.

Take the vertex of one of the cones for origin, and
let F^ [x, y, z) =0 and F^ {x, y, z) = be the equations of the
two conicoids. Then the equation of the cone will be of the
form F^ (x, y, z) -r XF^ (x, y, z) = 0. But, since the origin

is at the vertex of the cone, its equation will be homo-
geneous. We therefore have

u^ + Xu^

or
'U V
_1 _ _1 _

w^

d^

d.
(i).

Now the equation of the polar plane of with respect to

any conicoid

^1 (^> 2/> ^) + H'K {^> y> ^) = 0, is

(^1 + /^^a) ^ + (^ + 1^%) 2/ + K + /^^a) z-\-d^ + fjLd^ = 0',

and, from (i), it is clear that this polar plane coincides with

UjX + v^y + lu^z + c?j =
for all values of fx.

S. S. G. 9
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Hence lias the same polar plane with respect to all

conicoids throuGjh the curve of intersection of the two driven

conicoids.

Now the polar plane of with respect to any one of the
other cones through the curve of intersection will pass
through the vertex of that cone, and hence the vertices of

the other three cones are on the polar plane of with respect

to any conicoid through the curve of intersection of the given
conicoids: this proves the theorem.

143. If S=0 be the equation of any conicoid, and
ayS = the equation of any two planes, then will 8 — Xol/S =
be the general equation of a conicoid which passes through
the two conies in which >S^ = is cut by the planes a =
and ^ = 0.

If now the plane a = be supposed to move up to and
ultimately coincide with the plane (3 = 0, we obtain the form
S — X/3^ = 0, which represents a system of conicoids, all of

which touch S = where it is met by the plane /3 = 0.

The surfaces >S^ — X-x/S = and S = touch one another at

the two points where they are cut by the line whose equa-
tions are a = 0, /5 = 0. For at either of these points the

surfaces have two common tangent lines, namely the tangent
lines to the sections by the planes a = and yS = 0.

144. All conicoids which pass through seven given j^oints

pass through another fixed point.

Let >Si, =0, S^ = 0, S^=0 be the equations of any three

conicoids through the seven given points.

Then the conicoid whose equation is S^ + \S^ + fiS^ =
will clearly pass through all points common to S^ = 0, 8^ =
and >S3 = ; and S^ + \S^ + ^mS^ = can be made to coincide

with any conicoid through the seven given points, for the

two arbitrary constants X and fM can be so chosen that

the surface will pass through any two other points. Now
the three conicoids S^ = 0, 8^ = 0, 8^ = have eight common
points, all of which are on 8^ + \8,^ + yLt>S*3 = ; this proves

the theorem.

ThuS; corresponding to any seven given points there is an
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eighth point associated with them, such that any conicoid

through seven of the points will also pass through the eighth

point ; and it should be remarked that in order that a system
of conicoids may have a common curve of intersection, they
must have eight points in common which are not so associated.

Ex. 1. All conicoids through the curve of intersection of two rectangular
hyperboloids are rectangular hyperboloids.

[A rectangular hyperboloid is one whose asymptotic cone has three per-
pendicular generating lines.]

The asymptotic cone of a conicoid has three generators at right angles
when the sum of the coefficients of x-, y'^ and z^ in the equation of the surface
is zero. Now the sum of the coefficients of x-, y'^ and z^ in S' + \S'=0 will be
zero, if that sum is zero in S and also in S'. This proves the proposition.

Ex. 2. Any two plane sections of a conicoid and the poles of those planes
lie on another conicoid.

Let ax- + by- + cz"^ + d= be the conicoid, and let {x\y\ z') and (x", y", z")

be any two points. The equations of the polar planes of these points will be
axx' + byy' + cz£ + cZ= and axx" + byy" + czz" + d=0.

The conicoid

X (ax2 + hxf- + cz^ + d) - {axx + byy' + czz' + d) (axx" + byy" + czz" + rf) =

is the general equation of a conicoid through the two plane sections. The
conicoid will pass through (x', y , 2;') if \ be such that

X (ax'2 + by'"- + cz"- + d) - (ax'2 + bxj"^ + cz'"- + d) {ax'x" + by'y"+ cz'z" + d) = 0,

or if X=ax'x"+by'y" + cz'z"+ d.

The symmetry of this result shews that the conicoid will likewise pass
through (x", y", z").

Ex. 3. Through the curve of intersection of a sphere and an ellipsoid four
quadrlc cones can be drawn; and if diameters of the ellipsoid be drawn
parallel to the generators of one of the cones the diameters are all equal.

Also the continued product of the four values of such diameters is equal to the

continued product of the axes of the ellipsoid and of the diameter of the

sphere.

Let the equations of the ellipsoid and of the sphere be

"^^Vl + t^l
a^ b" c-

and (x - a)2 + (y - /3)2 + (2 - 7)2= r\

The general equation of a conicoid through the curve of intersection is

9—2
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This conicoid will be a cone, if the co-ordinates of the centre satisfy the
equations

and ^ax-^y-yz + a- + ^- + y^-r^-\= 0.

Eliminating x, y, z we have

„2„2 5202 g2-v2

If, for any particular value of X, the conicoid given by (i) is a cone, the

equation of the cone, when referred to its vertex, takes the form

and therefore the direction-cosines of any diameter which is parallel to one
of the generating lines of the cone, satisfy the equation

!l. ^ !^ _ _ 1
^•2 + 5a + ga - X

*

Hence the square of the semi-diameter is constant and equal to - \.

Hence also the continued product of the squares of the four values of
the semi-diameters is equal to the product of the four roots of the equation (ii)

;

and the product of the roots is easily seen to be a'-b^c-r^.

Ex. 4. The locus of the centres of all conicoids which pass through seven

given points is a cubic surface, lohich passes through the middle point of the

linejoining any pair of the seven given points.

Let ^1= 0, >S'2= 0, *S'3= be any three conicoids through the seven given
points ; then the general equation of the conicoids is

The equations for the centre are

dx dx dx *

dS, ^dS^ dS^ ^

dy dy dy

dz dz dz
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Hence the equation of the locus of the centres, for different vahies of \

and ^l, is

dy'
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stituted in the given tangential equation, we shall obtain an
equation of the 7^*'' degree for the determination of \, which
proves the proposition.

Def. A surface is said to be of the ?i"' class when 71

tangent planes can be drawn to it through an arbitrar}^

straicfht line.

147. We have shewn in Art. 57 that the plane

Ix + my + nz + 1 =

will touch the conicoid whose equation is

ax^+ hy^+ cz^ + 2fi/z + 2gzx + 2hxy + 2ux-\- 2vy + 2wz +cZ = 0,

if Ar + Enx" + O/i' + 2Fmn + 2Gnl + 2Hlin

+ 2Ul+2Vm+2Wn + D = 0,

where A, B, C... are the co-factors of a, h, c... in the dis-

criminant.

Hence the tangential equation of a conicoid is of the
second degree.

Conversely every surface whose tangential equation is of

the second degree is a conicoid.

148. Since the tangential equation of a conicoid is of the

second degree, which in its most general form contains nine

constants, it follows that a conicoid can be made to satisfy

nine conditions and no more ; and in particular a conicoid

can be made to touch nine given planes.

149. To find the Cartesian co-ordinates of the centre of the

conicoid given by the general tangential equation of the second

degree.

The two tangent planes to the conicoid which are parallel

to the plane x=0 are those for which m = n = 0. The values

of I are therefore given by the equation al'^ + 2id + cZ = 0.

Now the centre of the surface is on the plane midway

between these: and hence the centre is on the plane ic = -,

.

a
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Similarly the centre is on the planes y = -j, and -2^ = 7 •

Hence the required co-ordinates are -^ , -^ , -v . [See

Art. 7G.]

150. We may take the equation of the moving plane to

be Ix -f my -\-nz + p = (d\ and the j^lane will envelope a surface

if I, 711, n, p be connected by a homogeneous equation ; for

any homogeneous equation in I, m, n, p would be equivalent

to an equation between the constants -
, —

, -

.

p p p
If we take Ix -\-my + nz +2^ — ^ fo^ the equation of the

plane, we may suppose I, m, n to be the direction-cosines of

the normal to the plane.

151. To find the director-sphere of a conicoid whose
tangential equation is given.

If we eliminate p between the equation of the surface and
the equation Ix + my + nz -^^ p — O, we shall obtain a relation

between the direction-cosines of any tangent plane which
passes through the particular point {x, y, z). The relation

will be

ar -f- hn^ + cn^ + d(lx + my + nzf -f- 2fmn + 2gnl -f 2hhn
— 2 (ul + vm + wn){lx -f my + nz) = 0.

If {x, y, z) be a point on the director-sphere, three per-

pendicular tangent planes will pass through it ; the above
relation must therefore be satisfied by the direction-cosines

of each of three perpendicular planes. Hence, by addition,

we have
a-{-h + G— 2ux — 2vy — 2wz + d(x'^ + y^-\- z') = 0,

which is the required equation of the director-sphere.

152. If S=0 and 8' = Ohe the tangential equations of

any two conicoids which touch eight given planes, then the

equation S -\- \S' = will be of the second degree, and will

therefore be the tangential equation of a conicoid; and it is

clear that the conicoid S + XS' = will touch the common
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tangent planes of aS^ = and >S^' = 0, for if the co-ordinates of

any plane satisfy the equations S = and S' = 0, they will

also satisfy the equation S -hXS' = 0. Also, by giving a
suitable value to X, the conicoid >Si + \S' = can be made to

touch any ninth plane : it will therefore represent any coni-

coid touching the eight given planes.

153. If >Sfj = 0, S,^ = 0, >Si3 = be the tangential equations

of any three conicoids which touch seven given planes ; then
the conicoid whose tangential equation is S^ -\- XS,^ + /jlS^ =
will touch each of the seven given planes, for if the co-

ordinates of any plane satisfy the three equations S^ = 0,

S^ = and S^ = 0, it will also satisfy the equation

>sf^ + xs,^ + fxS^ = 0.

Also, by giving suitable values to X and fi, the conicoid

S^+XS, + fMS^ =

can be made to touch any tiuo other planes ; hence

S, + XS^ + fiS.^ =

is the most general equation of a conicoid which touches the

seven given planes.

Similarly, if S, = 0, S,= 0, S,= and >S^, = be the

tangential equations of any four conicoids which touch six

given planes, >S\ -f XS,^ + f^S^ + vS^ = will be the general

tangential equation of the conicoids which touch those six

planes.

Ex. 1. The centres of all conicoids which touch eight given planes are on a
straight line.

II S= and S'= Ohe the equations of any two conicoids which touch the

eight given planes, then S + \S' = will be the general equation of a conicoid

touching them. The centre of the conicoid is given by

_u + Xw' _v + \v' _w + \w'

Eliminating X we obtain the equation of the centre locus, namely

dx-u _ dy-v dz-w
^

d'x -u'~ d'y -v'~ d'z - w'
'

hence the locus is a straight line.
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Ex. 2. The centres of all conicoids which touch seven given planes are on

a plane.

li S= 0, S'= 0, S"= be the equations of three conicoids which touch the

seven given planes, then the general equation of a conicoid which touches the

planes will be S + \S' + fxS"= 0.

Ex. 3. The director-spheres of all conicoids lohich have eight common
tangent planes have a common radical plane.

The director-sphere of the conicoid S + \S'= is

a + b + c- 2ux - 2v7j - 2ivz + d (x- + y^ + z-)

+ \{a' + h' + c'- 2iix - Iv'ij - 2w'z + d' {x" + ?/2 + z")
J
= 0.

Ex. 4. The director-spheres of all conicoids ivhich touch six given planes

are cut orthogonalhj hy the same sphere. [P. Serret's Theorem.]

If Ci= 0, 0.2= 0, C3= and C^= be the equations of any four conicoids

which touch the six planes; then the general equation of the conicoids

will be

Now from Art. 151 we see that the equation of the director-sphere of a
conicoid is linear in a, b, c, &c. It therefore follows that, if 8^ = 0, So=0,
S^— and S^= be the equations of the director-spheres of the conicoids

Ci= 0, C'.3= 0, C.^= and 64= respectively, the equation of the du'ector-

sphere of C^ + XCg -t- fiC^ + vC^=

will be Sj^ + \So + fj^S^ + vS^= 0.

Now from the condition that two spheres may cut orthopjonally [Art. 90,

Ex. 6J, it follows that a sphere can always be formed which will cut four given

spheres orthogonally; and it also follows that the sphere which cuts

orthogonally the four spheres 8^ = 0, So= 0, S^ = and S^= 0, will cut

orthogonally any sphere whose equation is Si-^-XS^ + fJ^So + uS^^ — O. This
proves the proposition.

Ex. 5. The locus of the centres of conicoids which touch six planes, and
have the sum of the squares of their axes given, is a sphere. [Mention's

Theorem.]

By Ex. 4 all the director-spheres of the conicoids are cut orthogonally by
the same sphere; and the director-spheres have a constant radius. Hence
their centres, which are the centres of the conicoids, are on a sphere con-

centric with this orthogonal sphere.

Keciprocation.

154. If we have any system of points and planes in

space, and we take the polar planes of those points and the

poles of the planes, with respect to a fixed conicoid G, we
obtain another system of planes and points which is called
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the polar reciprocal of the former with respect to the

auxiliary conicoid C.

When a point in one S3"stem and a plane in the reciprocal

are pole and polar plane with respect to the auxiliary

conicoid C, we shall say that they correspond to one another.

If in one system we have a surface >S', the planes

which correspond to the different points of S will all touch

some surface >S". Let the planes corresponding to any

number of points P, Q, R... an a plane section of >S^ meet
in T; then T is the pole of the plane PQR with respect to

0, that is the plane FQR corresponds to T. Now, if the

plane PQR move up to and ultimately coincide with the

tangent plane at P, the corresponding tangent planes to S'

will ultimately coincide with one another, and their point of

intersection T will ultimately be on the surface S'. So that

a tangent plane to the surface S corresponds to a point

on the surface S', just as a tangent plane to >S' corresponds

to a point on S. Hence we see that >S* is generated from S'

exactly as S' is from S.

155. To a line L in one system corresponds the line L'

in the reciprocal system which is the polar line of L with

respect to the auxiliary conicoid.

If any line L cut the surface S in any mimber of points

P, Q, R... we shall have tangent planes to S' corresponding

to the points P, Q, R..., and these tangent planes will

all pass through a line, viz. through the polar line of L with

respect to the auxiliary conicoid. Hence, as many tangent

planes to S' can be drawn through a straight line as there

are points on S lying on a straight line. That is to say the

class [Art. 146] of 8' is equal to the degree of S. Reciprocally

the degree of >§' is equal to the class of S.

In particular, if S be a conicoid it is of the second degree

and of the second class ; hence S' is of the second class and of

the second degree, and is therefore also a conicoid.

156. The reciprocal of a point which is common to

two surfaces is a plane which touches both the reciprocal

surfaces.
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If two surfaces have a common curve of intersection,

they have an infinite number of common points ; the

reciprocal surfaces therefore have an infinite number of

common tangent planes. These common tangent planes

form a surface : and, since the line of intersection of any
two consecutive planes is on the surface, it is a ruled

surface, the generating lines being the lines of intersection

of consecutive planes. Any one of the planes contains

two consecutive generating lines, so that two consecutive

generators must intersect ; hence the surface is a developable

surface.

If all the points of the curve lie on a plane, all the

tangent planes to the developable pass through a point

;

the developable must therefore be a cone. Hence the

reciprocal of a plane curve is a cone.

It follows by reciprocation from Art. 144, that all coni-

coids which touch seven fixed planes will touch an associated

eighth plane.

It also follows from Art. 140 that all conicoids which
touch eight given planes have an infinite number of common
tangent planes, provided that the eight given planes do not

form an associated system.

157. The reciprocation is usually taken with respect to

a sphere, and since the nature of the reciprocal surface is in-

dependent of the radius of the sphere, we only require to

know the centre of the sphere, which is called the origin of

reciprocation.

The line joining the centre of a sphere to any point is

perpendicular to the polar plane of the point. Hence, if P, Q
be any two points, the angle between the polar planes of

these points with respect to a sphere is equal to the angle

that PQ subtends at the centre of the sphere.

158. If any conicoid be reciprocated with respect to a ^^

point 0, the points on the reciprocal surface which corre-

spond to the tangent planes through to the original surface '

must be at an infinite distance.
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Hence the generating lines of the asymptotic cone of the

reciprocal surface are perpendicular to the tangent planes of

the enveloping cone from to the original surface.

In particular, if the point be on the director-sphere of

the original surface, that is if three of the tangent planes

from be at right angles, the asymptotic cone of the

reciprocal surface will have three generating lines at right

ansfles.

Corresponding to a point at infinity on the original

surface we have a tangent plane through to the reciprocal

surface.

Hence the tangent cone from the origin to the reciprocal

surface has its tangent planes perpendicular to the generating

lines of the asymptotic cone of the original surface.

In particular, if the asymptotic cone of the original surface

have three perpendicular generating lines, three of the tangent
planes from to the reciprocal surface will be at right angles,

so that is a point on the director-sphere of the reciprocal

conicoid.

159. As an example of reciprocation take the theorem :

—

" If tv/o of the conicoids which pass through eight given
points are rectangular hyperboloids, they will all be rect-

angular hyperboloids." If this be reciprocated with respect

to any point we obtain the following, " If the director-

spheres of two of the conicoids which touch eight given
j)lanes pass through a point 0, the director-spheres of all the

conicoids will pass through 0." Hence " the director-spheres

of all conicoids which touch eight given planes have a com-
mon radical plane."

As another example of reciprocation take the theorem :

—

" A straight line is drawn to cut the faces of a tetrahedron

ABCD which are opposite to the angles A, B, C, D in

a, h, c and d respectively. Shew that the spheres described

on the straight lines Aa, Bb, Cc, and Del as diameters have
a common radical axis."

Let be a point of intersection of the spheres whose
diameters are Aa, Bb and Cc. If we reciprocate with
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respect to we shall obtain another tetrahedron whose

faces and angular points correspond respectively to the

angular points and faces of the original tetrahedron. Corre-

sponding to the four points a, b, c, d which are on a straight

line, we shall have four planes with a common line of inter-

section; and, since a, b, c, d are on the faces of the original

tetrahedron, the corresponding planes will pass through the

angular points of the reciprocal tetrahedron ; also since the

angles AOa, BOb, COc are right angles, the three pairs

of planes corresponding respectively to a and A, to b and

B, and to c and C will be at right angles ; this shews that

the line of intersection of the planes correspondmg to a, b, c, d
will meet three of the perpendiculars of the reciprocal

tetrahedron. But we know [Art. 185, Ex. 4], that every line

which meets three of the perpendiculars of a tetrahedron,

meets the remaining perpendicular ; and hence the planes

corresponding to d and D are at right angles, which shews

that the angle dOD is a right angle. Hence is also on

the sphere whose diameter is Dd.

Ex. 1. The reciprocal of a sphere with respect to any point is a conicoid

of revolution.

Ex. 2. Find the reciprocal of ax^+hj" + cz'^ =l\{iih. respect to the sphere

^ a c

Ex. 3. Shew that the reciprocal of a ruled surface is a ruled surface.

Ex. 4. Shew that if two conicoids have one common enveloping cone
they also have another. [The reciprocal of Art. 120.]

Ex. 5. Either of the two surfaces ax' + by^= ±2z is self reciprocal with
respect to the other.

Examples ox Chapter YII.

1. When three conicoids pass through the same conic, the

planes of their other conies of intersection pass through the same
line.

2. Shew that, if the curve of intersection of two conicoids

cross itself, the conicoids will touch at the point of crossing; and
that if the curve of intersection cross itself twice, it will consist

of two conies.
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3. Sbew tliat thi-ee paraboloids will pass througli the curve of

iutersection of any two conicoids.

4. Shew that a surface of revolution will go through the

intersection of any two conicoids whose axes are parallel.

5. If a conicoid have double contact with a sphere, the square

of the tangent to the sphere from any point on the conicoid is in

a constant ratio to the product of the distances of that point from
the planes of intersection.

6. Any two conicoids which have a common enveloping cone
intersect in plane curves.

7. Shew that the polar lines of a fixed line, with respect to a
system of conicoids through eight given points, generate an hyper-
boloid of one sheet.

8. Shew that the polar planes of a fixed point, with respect

to a system of conicoids through seven given points, pass through
a fixed point.

9. Shew that the poles of a fixed plane, with respect to a
system of conicoids which touch seven given planes, lie on a fixed

plane.

10. The polar planes of a point with respect to two given
conicoids are at right angles ; shew that the locus of the point is

another conicoid.

11. All conicoids through the intersection of a sphere and
a given conicoid, have their principal planes, and also their cyclic

planes, in fixed directions.

12. If be any point on a conicoid, and lines be drawn
through parallel to equal diameters of the conicoid, these lines

will meet the surface on a sphere whose centre is on the normal
at 0.

13. If be the centre of any conicoid through the intersec-

tion of a sphere and a given conicoid, the line joining to the

centre of the sphere is perpendicular to the polar plane of with
respect to the given conicoid.

14. Shew that, in a system of conicoids which have a common
curve of intersection, the diametral planes of parallel diameters

have a common line of intersection.
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15. If a system of conicoids be drawn through the inter-

section of a given conicoid and a sphere whose centre is 0, the

normals to them from form a cone of the second degree, and
their feet are on a curve of the third order which is the locus of

the centres of all the surfaces.

16. If any point on a given diameter of an ellipsoid be
joined to every point of a given plane section of the surface, the

cone so formed will meet the surface in another plane section,

whose envelope will be a hyperbolic cylinder.

17. A cone is described with its vertex at a fixed point, and
one axis parallel to an axis of a given quadric, and the cone cuts

the quadric in plane curves ; shew that these planes envelope a

parabolic cylinder whose directrix-plane passes through the fixed

point.

18. If two spheres be inscribed in any conicoid of revolution,

any common tangent plane of the spheres will cut the conicoid in

a conic having its points of contact for foci.

19. If the line joining the point of intersection of three, out

of six given planes, to the point of intersection of the other three,

be called a diagonal ; shew that the ten spheres described on the

diagonals have the same radical centre, and the same orthogonal

sphere.

20. The circumscribing sphere of a tetrahedron which is self

polar with respect to a conicoid cuts the director-sphere of the

conicoid orthogonally.



CHAPTER VIII.

confocal conicoids. concycltc conicoids.
Foci of Conicoids.

160. Conicoids whose principal sections are confocal

conies are called confocal conicoids.

The general equation of a system of confocal conicoids is

2 2 2X y z ^

a" + X Z>'' + X c' + X

Suppose a, h, c to be in descending order of magnitude.

If X is positive, the surface is an ellipsoid, and the

principal axes of the surface will increase as X increases, and
their ratio will tend more and more to equality as X is

increased more and more ; so that a sphere of infinite radius

is a limiting form of one of the confocals.

If X is negative and less than c^ the surface is an ellipsoid

;

but the ellipsoid becomes flatter and flatter as X approaches

the value — c^. Hence the elliptic disc whose equations are

_ x^ y' _-\

a - c h — c

is a limiting form of one of the confocals.

If X is between — c^ and — 6''^ the surface is an hyperboloid

of one sheet. When X is very nearly equal to — c^, the

hyperboloid is very nearly coincident with that part of the

plane z = which is exterior to the ellipse —r, r. + y^—7 = 1'^ ^ a —c —c
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When X is very nearly equal to — 6^ the hyperboloid is

very nearly coincident with that part of the plane y =
which contains the centre and is bounded by the hyperbola

2 2

i^ 1 19. *•

If X is between — ¥ and — a^, the surface is an hyper-
boloid of two sheets. When \ is very nearly equal to — b'\

the hyperboloid is very nearly coincident with that part

of the plane y = which does not contain the centre and is

w' z"
bounded by the hyperbola —^—r^ +-^—r^ = 1.

When \ is between — o? and — (» the surface is imaginary.

The two conies

x^ . f _^ = 0,- 5 + 77^^ = 1,
a' — c' h' — &

x'' z"
and- 2/ = 0,;j,-^ + ^,-^,= l,

which we have seen are the boundaries of limiting forms
of confocal conicoids, are called focal conies, one being the
focal ellipse, and the other the focal hyperbola.

161. Three conicoids, confocal luith a given central conicoid,

will pass through a given point ; and one of the three is an
ellipsoid, one an hyj^erboloid of one sheet, and one an hyper-
boloid of two sheets.

Let the equation of the given conicoid bo
2 2 2

-^ + r2+-.= l.
a c

Any conicoid confocal to this is

_-'--, f +^=1 (1).a'-x 6' - X c'-\
This will pass through the particular point (f g, h) if

/' ib' - \) (c^ - X) + ^^ (c' - X) {a' - X)

+ A'(a^-X)(6'-X)-(a'-X)(6'-X)(c'-X) = (ii).

S. S. G. 10
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If we substitute for X the values a^ 6% c\ and — oo in

succession, the left side of the equation (ii) will be +, —,+,—;
hence there are three real roots of the equation, namely one

between d^ and If, one between h^ and c\ and one between

c^ and — 00 . When \ is between c^ and — co , all the

coefficients in (i) are positive, and the surface is an ellipsoid

;

when X is between c^ and 6^ one of the coefficients is

negative, and the surface is an hyperboloid of one sheet ; and
when X is between h^ and oj^ two of the coefficients are negative,

and the surface is an hyperboloid of two sheets.

162. One conicoid of a given confocal system will touch

any plane.

Let the equation of the plane be

Ix + my + nz — p.

The plane will touch the conicoid

+ r^^r^ + 3-7-7 = 1, v^-
a' +\ h' + \ c'+X ' ^

if (a'^ + X) Z^+ (6'^ + X) m"" + (c' + X)?i^ =p^

which gives one, and only one, value of X. Hence one con-

focal will touch the given plane.

163. Two conicoids of a confocal system will touch any
straight line.

Let the straight line be the line of intersection of the
planes Ix + my + 7iz +p = 0, I'x + m'y + n2+p =0.
Any plane through the straight line will be

(I + kV) x+{m + hni) y-\-{n + hi) z + {p-^ kp) = 0.

This plane will touch the conicoid

x^ 1f^ z^
' ^ ' -1,

a' + X 6' + X c' + X

if {a" + X) (Z + kiy + {If + X) {m + kmj
+ {c'-\-\){n-\-knf^{l->-Vkp')\
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Now, if the given line be a tangent line of the conicoid, the
two tangent planes through it will coincide. Hence the roots

of the above equation in k must be equal. The condition for

this gives the following equation for finding \

[{aJ" + X) V^ + (If + X) m" + {c^ + X) n'' - p"]

= [{a^ + X) IV + (6* + X) mm + [c" + X) nn'-pp']\

Since the equation is of the second degree, there are two
confocals which touch the given line.

164. Two confocal conicoids cut one another at right

angles at all their common points.

Let the equations of the conicoids be

a;'
^ ¥ ^ & '

x^ f z"

a' + X 6' + X c' + X

and let {xyz) be a common point ; then the co- ordinates

x\ y, z will satisfy both the above equations. Hence, by
subtraction we have

^" y'^ ^"
n r^ '

Now the equations of the tangent planes at the common
point {x'y'z) are

XX ?/?/' zz' ^

a c

J xx'
. yy zz - ^. ,

and -^—- + T~-^ + —,—^ = 1, respectively,
a' + X 6' + X c' + X ' ^

^

The condition (i) shews that these tangent planes are at

10—2

riojht anofles.
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165. If d straight line touch two confocal conicoids, the

tangent planes at the points of contact will he at right angles.

Let {xy'z), {x'lj'z") be the points of contact, and let the

conicoids be
sr} 7/ /

tt"' -f- X 6' + X c' + \

The tangent planes will be at right angles if

XX It 11 ZZ /N /-v^ -^ - '^ -
-, =0...(i).

But, since the line joining the two points is a tangent line to

both conicoids, each point must be in the tangent jplane at

the other. Hence

XX y y ZZ _-

t If lit III
, XX y y z z ^

and ^TTT^ + 7/rv+-^-TT^ = l-a+\ o+\ c +\
By subtraction we see that the condition (i) is satisfied.

Ex. 1. The difference of the squares of the perpendiculars from the
centre on any two parallel tangent planes to two given confocal conicoids is

constant, [p^- - p^^=\- \-]

Ex. 2. The locus of the point of intersection of three planes mutually
at right angles, each of which touches one of three given confocals, is a
sphere. [See Art, 92.]

Ex. 3. The locus of the umbilici of a system of confocal ellipsoids is the
focal hyperbola.

[The umbilici are given by

^/(aHX) V«'-c2' ^ ' x/(c- + X)
= i /^^^ 1

Ex. 4. If two concentric and co-axial conicoids cut one another everywhere
at right angles they must be confocal.

Ex. 5. P, Q are two points, one on each of two confocal conicoids, and
the tangent planes at P, Q meet in the line ES ; shew that, if the plane
through US and the centre bisect the line PQ, the tangent planes at P and Q
must be at right angles to one another.
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Ex. 6. Shew that two confocal paraboloids cut everywhere at right angles.

[The general equation of confocal paraboloids is ^—i- H

—

^-^=2z + \.']

166. We have see'n that three coaicoids confocal with a

given conicoid will pass through any point P, the parameters

of the confocals being the three values of X given by the

equation

x'^

a' + X h' + \ c' + X

where cc, y, z are the co-ordinates of P.

If the roots of the above equation be X^, \^, \, it is easy

to shew that

(a' - b') (a' - c')
'

with similar values for y'^ and z^.

Hence the absolute values of the co-ordinates of any
point can be expressed in terms of the parameters of the

conicoids which meet in that point, and are confocal with a
given conicoid.

167. The parameters of the two confocals through any
point P of a conicoid are equal to the squares of the axes of
the central section of the conicoid which is parallel to the

tangent plane at P ; and the normals at P to the confocals

are parallel to the axes of that section.

Let (x\ y, z) be any point P on the conicoid whose
equation is

a?^ V^ -2^ -.—\- — A— = 1 •

a c

then, if P be on the confocal whose parameter is X, we have
'2 '2 '2x y z -,

a'-X H'-X c'-X
and therefore

T^ ni'^ z'^
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The Equation of the central section parallel to the tangent

plane at P is

a'
+

}^^
+

c^
^•

Hence the equation giving the squares of the axes of the

section is
'2 '2 j.'2

d^ r' h' 7-^ c" r^

^^
a? id' - r') ^ b' {(}' - r')

"^
c' (c' - r')

" ^''''*

Comparing (i) and (ii), we see that the squares of the

axes of the section are the two values of \.

The equations of the diameter which is parallel to the

normal at P to one of the confocals are

X y z

\

X y
d' -\ ¥-\ c'-X

The length of the diameter will be equal to 2^/\ if it be
one of the generating lines of the cone

the condition that this may be the case is

os" /I 1\ y"' (\ 1\ z'^ (\ \\_
(a' - xyw -xJ

"^
{¥ - xy w x)

"^
(c^ - xyw x)~^''

and it is clear from (i) that this condition is satisfied.

Hence an axis of the central section is parallel to the
normal to one of the confocals through P, and the square of
the length of the semi-axis is equal to the parameter of
that confocal.
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Cor. If diameters of a conicoid be drawn parallel to the
normals to a confocal at all points of their curve of inter-

section, such diameters will be of constant leno-th.

168. Two points {x, y, z), (f, 77, f), one on each of two
co-axial conicoids whose equations are

a c a p 7
respectively, are said to correspond when

^ = f, 1=1 and ? = -^
a a p c y

In order that real points on one conicoid may correspond
to real points on the other, the two surfaces must be of the
same nature, and must be similarly placed.

It follows at once from the equations (i), Art. 96, that if

on one of the conicoids three points be taken which are ex-
tremities of conjugate diameters, the three correspondino-

points on the other conicoid will be at extremities of con-
jugate diameters.

169. The distance between two points, one on each of two
confocal ellipsoids, is equal to the distance between the two
corresponding points.

Let (^,, 7/j, z^), (x,, 3/2, z^) be the two points on one
conicoid, and (fj, tj^, Q, (f^, Vo, Q the corresponding points
on the other conicoid.

Then ^' = is ^ = ^, ^ = £;
a a. b /i^ c 7

'

^r^A 5-& 2/2 _ ^2 ^2_?;
a a p c y

We have to prove that

(^. - ?.)'+ (y^-vd'+ {^- rj = (^. - f.)'+ (2/.- v,y + {^- r,)^

•' ef.-i'.)"+(i'.-f''.)"*es-?'.)'



152 COXFOCAL CONICOIDS.

or

wLicli is clearly the case, since the conicoids are confocal, and

2 * d'i ' 2 2 ' 7 2 •" „a •

a p 7 a c

170. The locus of the poles of a given plane with respect

to a system of confocal conicoids is a straight line.

Let the equation of the confocals be

x'^
y"" z^

of —X h^ — \ c^ — X

and let the equation of the given plane be

Ix + my + nz=l.

The equation of the polar plane of the point {x', y\ z) is

XX yy zz
'

^^ +^.—: =1.
d'-X b'-X c'-\

Comparing this equation with the equation of the given

plane, we have

X , y . z

' I I

therefore ^ - a' = ^ - 6' = - - cl
L "ill n

Hence the locus of the poles is the straight line whose

equations are

X — aH _y — h'm _z — c^n

7 m n

This straight line is perpendicular to the given plane, and

it clearly must pass through the point of contact of that con-

focal which touches the plane. Hence the perpendicular

from any point on its polar plane with respect to a conicoid

meets the polar plane in the point where a confocal conicoid

touches it.



CONFOCAL CONICOIDS. 153

171. The axes of the enveloping cone of a conicoid are
the normals to the confocals which pass through its vertex.

Let OP, OQ, OR be the normals at to the three

conicoids which pass through and are confocal with a given
conicoid; and let P, Q, R be on the polar plane of with
respect to the given conicoid.

By the last article, the line OP is the locus of the poles of

the plane QOR with respect to the system of confocals.

Hence, the pole of the plane QOR wdth respect to the given
conicoid is on the line OP \ the pole is also on the plane
PQR, because PQR is the polar plane of and therefore con-

tains the poles of all planes through 0. Therefore the point

P is the pole of the plane QOR with respect to the given
conicoid. Similarly Q and R are the poles of the planes ROP
and POQ respectively. Hence OPQR is a self-polar tetra-

hedron with respect to the original conicoid.

Now let any straight line be drawn through P so as to

cut the given conicoid in the points A, B and the plane QOR
in G. Then [Art. 56] the pencil [APBG] is harmonic; and
OP and OC are at right angles, hence OP bisects the angle

AOB. This shews that OP is an axis of any cone whose
vertex is at 0, and whose base is a plane section of the

conicoid through P. One such cone is the enveloping cone
from to the given conicoid ; hence OP is an axis of the

enveloping cone. We can shew in a similar manner that OQ
and OR are axes of the enveloping cone.

172. To find in its simplest form the equation of the

enveloping cone of a conicoid.

Let the equation of the conicoid be

^+^V^'=i
d'^h'^c'

The equation of any tangent plane is

lx + my-\-nz = Aj(aT + 6'W + cV).

Hence the direction-cosines of the normal to any tangent

plane which passes through the point (x^, y^, z^ satisfy the
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equation

a^Z" + Unv 4- c-/i^ — (Jx^ + my^ + nz^'^ = 0.

Hence the equation of the reciprocal of the enveloping cone

whose vertex is {x^, y^, z^ is

aV + hY + cV - {xx^ + yy, + ^^,)^ = (i).

Similarly the equation of the reciprocal of the enveloping

cone of the conicoid
2 2 8X If z ^ ....

q!" — X ¥ — \ d^ — \

is (a^-X) x'^- {h'- X) y-+ {c'-X)z'- {xx,+ yy,-\- zz,y= 0. . .(iii).

It is clear from Art. 60, that the cones (i) and (iii) are

co-axial for all values of X. Hence, since a cone and its

reciprocal are co-axial, it follows that all cones which have a

common vertex and envelope confocal conicoids are co-axial

;

and, by considering the three confocals which pass through

the vertex, the enveloping cones to which are the tangent

planes, we see that the principal planes of the system of

cones are the tangent planes to the confocals which pass

through their vertex.

The enveloping cones of the three confocals which pass

through (Xq, y^y z^) are planes, and their reciprocals are

straight lines. Hence the three values of \ for which the

left side of (iii) is the product of linear factors (which are

imaginary) are the three parameters \, \, \ of the con-

focals through (x^, 3/0, Zq).

But [Art. 77] the three values of \ for which the left

side of (iii) is the product of linear factors are the three roots

of the discriminating cubic of (i)

.

Therefore the roots of the discriminating cubic of (i) are

X, Xg, X3; so that the equation of the reciprocal of the

enveloping cone, when referred to its axes, is

Hence the equation of the enveloping cone is

^ + l! + £! = o.
Xj \ Xg
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Ex. Find the locus of the vertices of the right circular cones lohicU

circumscribe an ellipsoid.

If a cone be right circular, the reciprocal cone will be right circular.

Hence we require the condition that the cone whose equation is

may be right circular.

If Xq, t/q, Z(^ be all finite, the conditions for a surface of revolution are

[Art. 85] a2-V+V=&'-yo' + yo'-c2-V +V,
so that, unless the surface is a sphere, x^ij^Zq must be zero. If Zq=0, the
condition for a surface of revolution gives

Hence the enveloping cone from any point on the focal ellipse

5^?+65^=^''= '' «•

is right circular.

Similarly, the enveloping cones from points on

a^2 + ^2=1.2/ = 0..... (ii),

or from points on ~—
n + —r-—o = l, a:= (iii),

u- -a^ c'-a-' ^

are right circular.

The conic (ii) is the focal hyperbola, and (iii) is imaginary.

CONCYCLIC COXICOIDS.

173. The reciprocal of the conicoid

a^ + \ ¥ + \ c' -v\

with respect to the sphere x^ + y""'
-\-

z^ = k^, is

{a^ -\-\) x^ { {¥ ^\)f + {c" + \) z" = k\

It is clear that the reciprocal conicoids have the same
cyclic planes for all values of X.

Hence a system of confocal conicoids reciprocates into a

system of concyclic conicoids.
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174. The following are examples of reciprocal properties

of confocal and concyclic conicoids.

Three confocals pass througli

any point, namely an ellipsoid, an
liyperboloid of one sheet, and an
hyperboloid of two sheets; also the
tangent planes at the point to the
three surfaces are at right angles.

Three concyclics touch any plane,
namely an ellipsoid, an hyperboloid
of one sheet, and an hyperboloid of

two sheets; also the lines from the
centre to the points of contact of the
plane are at right angles.

Two confocals touch a straight

line, and the tangent planes at the
points of contact are at right angles.

Two concyclics touch a straight

line, and the lines from the centre
to the points of contact are at right

angles.

One conicoid of a confocal system
touches any plane.

The locus of the pole of a given
plane with respect to a system of
confocals is a straight line.

The principal planes of a cone
enveloping a conicoid are the tangent
planes to the confocals through its

vertex.

One conicoid of a concyclic system
passes through any point.

The envelope of the polar plane
of a given point with respect to a
system of concyclics is a straight line.

The axes of a cone whose vertex
is at the centre of a conicoid and base
any plane section, are the lines from
the centre to the points of contact of

the plane with the concyclics which
touch it.

Foci of Conicoids.

175. There are two definitions of a conicoid which corre-

spond to the focus and directrix definition of a conic.

One definition, due to Mac Cullagh, is as follows :—

•

A conicoid is the locus of a point which moves so that its

distance from a fixed point, called the focus, is in a constant
ratio to its distance {measured parallel to a fixed plane) from
a fixed straight line called the directrix.

Let the origin be the focus, and the plane ^ = the fixed

plane.

Also let the equations of the directrix be

I m n '



FOCI OF CONICOIDS. 157

Let X
, y , z be the co-ordinates of any point P on the locus,

and let a plane through P parallel to -2: = meet the directrix

in M, then M is 1/+^-^ (/ - U), g + '^ [z- h), z'\

.

Now OP^ = e^ . P3P, e being the constant ratio. Hence
the equation of the locus of (w, y , z) is

a;'+2/'+^'=e' ].-/-^^(.-/o}V{,-^-^|(.-A)f' • •(!)•

The locus is therefore a conicoid, and is such that sections

parallel to -s^ = are circles.

If the axes be changed in any manner (i) will always be
of the form

(^-a)'+(i/-/3y+(^-7)'-^ = 0,

where A is the sum of two squares, or is the product of two
imaginary factors. We can therefore find the foci of any
given conicoid whose equation is >S^ = 0, from the consideration

that S-\{[x- af + (y- I3f + (^ - 7)'} will be the product

of imaginary linear factors if (a, yS, 7) be a focus, provided a

suitable value be given to X.

176. The other definition of a conicoid, due to Salmon,
is as follows :

—

A cojiicoid is the locus of a point the square of whose
distance from a fixed j^oint, called a focus, varies as the pro-
duct of its distancesfrom two fixed planes.

The equation of the locus is clearly of the form

{x-af-\- {y-py-\-{z- 7)'=kXlx+my+ nz+p){Vx+m'y+ n'z+p').

We can find the foci of any conicoid according to this

definition by the consideration that

S-X{(x-ar + (y- ^y + (z-yy}

will be the product of real linear factors if (or, ^, 7) be a focus,

provided a suitable value be given to \,
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177. To find the foci of the conicoid whose equation is

ax"" + hf + cz^ = 1.

We liavie seen in Articles 175 and 176 that (a, /3, 7) is a

focus when

ax'+h2f + cz'-l-\{{x-ay+(y-l3y-]-{2-yy} (i)

is the product of linear factors.

Hence \ must be equal to a, or 6, or c.

Let X = a, then (i) becomes

(h - a) y'+ (c - a) /+ 2a2x + 2al3y+ 2ayz - a (a'+ fi'+y') -1,

or

2 ah^"^ acy'^
+ 2a2X — aur — ^ 1.

— a c — a

Hence, in order that (i) may be the product of linear

factors, we must have a = 0, and

b a c a

Similarly, if = h, we have /3 = and

— -'-J1_1 ' 1_1
a b c b

and, if X = c, we have 7 = 0, and

l_l"*"l_l~^*
a c b c

There are therefore three conies, one in each principal

plane, on which the foci lie.
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178. If the surface be an ellipsoid whose semiaxes are

a, 6, c, the conies on which the foci lie are

^+6-/^=l.^ = (0,

^^+?t:^=1'2/ = o (").

and / 3
+—

2 = 1, x = (iii).
b —a c — a ^ ^

Since a, h, c are in descending order of magnitude (i) is an
ellipse, (ii) is an hyperbola, and (iii) is imaginary. These
conies are called the focal conies ; and, as we have seen in

Art. 160, they are the boundaries of limiting forms of confocal

conicoids.

179. The focal conies of the cone ax"^ + hy^ + C2^ = can

be deduced from the above, or found in a similar manner.
The conies become

b a c a

c b a b

2 2

and 2 = 0, —^ + JI— = 0,

a c b G

One of the focal conies of a cone is therefore a pair of real

straight lines which are called the focal lines ; the other focal

conies are pairs of imaginary straight lines, which we may
consider as point-ellipses.

Ex. 1. Two cones whicli have the same focal lines cut one another at

right angles.

Ex. 2. Shew that the enveloping cones from any point to a system of

confocals have the same focal lines. .

Ex. 3. Shew that the focal conies of & paraboloid are two parabolas.
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180. The focal lines of a cone are perpendicular to the

cyclic planes of the reciprocal cone.

The equations of any two reciprocal cones referred to

their axes are

x^ v^ z^
ax"- -I- h\r + c-3^ = 0, and - + f- + - = 0.^ a b c

The cyclic planes are [Art. 121]

The focal lines are by the last article

X^ z'^ X^ 2^

a b c b

It is therefore clear that the focal lines of one cone are

perpendicular to the cyclic planes of the other.

Examples on Chapter YIII.

1. Three confocal conicoids meet in a point, and a central

plane of each is drawn parallel to its tangent plane at that point.

Prove that, one of the three sections will he an ellipse, one an
hyperbola, and one imaginary,

2. Plane sections of an ellipsoid envelope a confocal j stew
that their centres lie on a surface of the fourth degree.

3. F, Q are two points on a generator of a hyperholoid; P', Q'

the corresponding points on a confocal hyperholoid. Shew that

FQ' is a generator of the latter, and that PQ = P'Q'.

4. Shew that the points on a system of confocals which are

such that the normals are parallel to a given line are on a rect-

angular hyperbola.

5. If three lines at right angles to one another touch a

conicoid, the plane through the points of contact will envelope

a confocal.
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6. If three of the generating lines of the enveloping cone of
a paraboloid be mutually at right angles, shew that the vertex will

be on a paraboloid, and that the polar plane of the vertex will

always touch another paraboloid.

7. If through a given straight line tangent planes be drawn
to a system of confocals, the corresponding normals generate a
hyperbolic paraboloid.

8. Shew that the locus of the polar of a given line with respect

to a system of confocals is a hyperbolic paraboloid one of whose
asymptotic planes is perpendicular to the given line.

9. Planes are drawn all passing through a fixed straight line

and each touching one of a set of confocal ellipsoids; find the locus

of their points of contact.

10. At a given point the tangent planes to the three coni-

coids which pass through 0, and are confocal with a given conicoid,

are drawn ; shew that tliese tangent planes and the polar plane of

form a tetrahedron which is self-conjugate with respect to the

given conicoid.

11. Through a straight line in one of the principal planes

tangent planes are drawn to a series of confocal ellipsoids
;
prove

that the points of contact lie on a plane, and that the normals at

these points pass through a fixed point.

If a plane be drawn cutting the three principal planes, and
through each of the lines of section tangent planes be drawn to

the series of conicoid s, prove that the three planes which are the

loci of the points of contact intersect in a straight line which is

])erpendicular to the cutting plane, and passes through the three

fixed points in which the three series of normals intersect.

12. Any tangent plane to a cone makes equal angles with the

planes through the line of contact and the focal lines.

13. If through a tangent at any point of a conicoid two
tangent planes be drawn to a focal conic, these two planes will be

equally inclined to the tangent plane at 0,

14. The focal lines of the enveloping cone of a conicoid are

the generating lines of the confocal hyperboloid of one sheet which
passes through its vertex.

S. S. G. 11
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15. Any section of a cone which is normal at P to a focal

line, has P for one focus.

16. If a section of an ellipsoid be normal to a focal conic at

P, then P will be a focus of the section.

17. The product of the distances of any point P on a focal

conic of an ellipsoid, from two tangent planes to the surface which
are parallel to one another and to the tangent at P to the focal

conic, is constant for all positions of P.

18. From whatever point in space the two focal conies are

viewed they appear to cut at right angles.

Hence shew that the focal conies project into confocals on any
plane.

19. If two confocal surfaces be viewed from any point, their

apparent contours seem to cut at right angles.

20. If two cylinders with parallel generators circumscribe

confocal surfaces their sections by a plane perpendicular to the

generators are confocal conies.

21. The centres of the sections of a series of confocal conicoids

by a given plane lie on a straight line.

22. Shew that those tangent lines to an ellipsoid from an
external point whose length is a maximum or minimum are normals

at their respective points of contact to confocals drawn through

those points : and further, that the locus of these maximum and
minimum lines to a series of ellipsoids confocal with the original

one is a cone of the second degree.
"J3^

23. A straight line meets a quadric in two points P, Q so

that the normals at P and Q intersect : prove that PQ meets any
confocal quadric in points, the normals at which intersect, and
that if PQ pass through a fixed point it lies on a quadric cone.

24. If from any point normals are dra^vn to a system of

confocals (1) these normals form a cone of the second degree, (2)

the tangent planes at the feet of the normals form a developable

of the fourth degree. Consider the case of being in one of the

principal planes.
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25. The envelope of the polar plane of a fixed point with
respect to a system of confocal quadrics is a developable surface.

Prove this, and shew that the developable surface touches the six

tangent planes to any one of the confocals at the points where the

normals to that confocal through the fixed point meet that confocal.

26. Prove that the developable which is the envelope of the

polar planes of a fixed point P with respect to a system of confocal

quadrics, meet Q the polar plane of P with respect to one of the
confocals in a line, whose polar line with respect to the same
confocal is perpendicular to Q ; and that these polar lines generate

the quadric cone six of whose generators are the normals at P to

the three confocals through P, and the three lines through P
parallel to their axes.

27. Prove that if a model of a hyperboloid of one sheet be
constructed of rods representing the generating lines, jointed at the

points of crossing ; then if the model be deformed it will assume
the form of a confocal hyperboloid, and prove that the trajectory

of a point on the model will be orthogonal to the system of confocal

hyperboloids.

28. The two quadrics

2ayz + 2hzx + 2cxy — 1 and 2dyz + 2h'zx + Ic'xy = 1

can be placed so as to be confocal if

ahc a'h'c' a'b'c' a"b"G"
^

a'+b'+c'
"^
a"+ b"+ c" ~ '

(a' + b' + c'f
"^
{a"+b" + c'y ~ 2^'

29. Two ellipsoids, two hyperboloids of one sheet, and two
hyperboloids of two sheets belong to the same confocal system;

shew that of the 256 straight lines joining a point of intersection

of three surfaces to a point of intersection of the other three, there

are 8 sets of 32 equal lines, the lines of each set agreeing either in

crossing or in not crossing each of the principal planes.

30. A variable conicoid has double contact with each of three

fixed confocals ; shew that it has a fixed director-sphere.

11—2



CHAPTER IX.

QUADRIPLANAR AND TeTRAHEDRAL CO-ORDINATES.

181. In the quadriplanar system of co-ordinates, four

planes, which form a tetrahedron, are taken as planes of

reference, and the co-ordinates of any point are its perpen-

dicular distances from the four planes. The perpendiculars

are considered positive when they are drawn in the same
direction as the perpendiculars from the opposite angular

points of the tetrahedron.

Since the perpendicular distances of a point from

any three planes are sufficient to determine its position,

there must be some relation connecting the four perpen-

diculars on the planes of reference.

Let A, B, C, D be the angular points of the tetrahedron,

and a, h, c, d be the areas of the faces opposite respectively

to A, B, C, I); then, if a, /3, 7, 8 be the co-ordinates of any
point, the relation will be

where V is the volume of the tetrahedron ABCD. This

is evidently true for any point P within the tetrahedron,

since the sum of the tetrahedra BCDP, CDAP, DABP,
ABCP is the tetrahedron ABCD ; and, regard being had to

the signs of the perpendiculars, it can be easily seen to be
universally true.



TETRAHEDKAL CO-ORDINATES. 165

182. The tetrahedral co-ordinates a, /9, 7, B of any point

P are the ratios of the tetrahedra BCDP, GDAP, PABP,
ABCP to the tetrahedron of reference ABCD. The relation

between the co-ordinates is easily seen to be

a-f/3+7+S=l.
It is generally immaterial whether we use quadriplanar or

tetrahedral co-ordinates, but the latter system has some
advantages, and in what follows we shall always suppose the

co-ordinates to be tetrahedral unless the contrary is stated.

We shall also suppose that the equations are homogeneous,

for they can clearly always be made so by means of the relation

a-f/3-f- 7-1-8 = 1. When the equations are homogeneous we
can use instead of the actual co-ordinates any quantities

proportional to them.

183. The co-ordinates of the point which divides the

line joining (a^, /3,, 7^, 8J and (a^, ^^^y^' K) i^ ^^^^ ^^^io ^ '• H'

are easily seen to be

X-fyU, ' X -f yU,
' X-j-//. ' \ + fJU

184. The general equation of the first degree represents a

jylane.

The general equation of the first degree is

loL -\- m^ -\-ny + pS = 0.

We may shew that this represents a plane by the method
of Art. 13.

Since the equation la. + m/S -1- 717 -f pS = contains three

independent constants it is the most general form of the

equation of a plane.

The equation of the plane through the three points

(^1) l^v Iv ^1)' C^2' ft» 7o, ^2)' («3' ^3> 73' ^3) is

= 0.a ,
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185. To shew that the perpendiculars from the angular

points of the tetraliedron of reference on the _2^Za?ie whose

equation is Iol + m/S+ny +pB = are proportional to I, m, n,p.

Let Z, M, jS^, P be the perpendiculars on the plane from

the angular points A, B, G, D respectively; the perpendicu-

lars being estimated in the same direction. Let the plane

meet the edge AB in K, then at K we have 7 = 0, 8 =

and loL + mB — ; therefore — =—-, .m I

Now L:M::AK:BK.
But AK : AB :: ACDK : ACDB :: /S : 1;

similarly KB : AB :: KBCD : ABCD :: a : 1;

.-. L :2I::AK:-KB::^:-0L :: I : m;

.*. -y = — , and similarly each = — = — .

in '' n p

186. The lengths of the perpendiculars on a plane from
the vertices of the tetrahedron of reference may be called the

tangential co-ordinates of the plane; and, from the preceding

article, the equation of the plane whose tangential co-ordinates

are I, m, n, p is It. + mj3 + ny -\-pS = 0.

The co-ordinates of all planes which pass through the

point whose tetrahedral co-ordinates are a^, ^^, y^, B^, are

connected by the relation loc^ -j- m^^ -\- ny^+pS^ = 0. Hence
the tangential equation of a point is of the first degree.

187. The equation of any plane through the intersection

of the two planes whose equations are

la + m/3 + 7iy + j)8 = 0, and Ta +m^ + ny + p^'S = 0,

is {I + Xl') OL -H {m + \m) ^+ {n + \n') y + {p + \p) 8 = 0.

Hence the tangential co-ordinates of any plane through
the line of intersection of the two planes whose co-ordinates

are I, m, n, p and V, m, n, p are proportional io l-\- Xl',

'in -}- Xm', n -h A?i', p + \p.
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188. To find the ijerpendicular distance of a point from
a plane.

Let the equation of the plane be

loL -{- m/S -\- ny +pS = (i),

and let its equation referred to any three perpendicular
axes be

Ax+Bij-hCz + I> = :...(ii).

We know that the perpendicular distance of any point
from the plane (ii) is proportional to the result obtained by
substituting the co-ordinates of the point in the left-hand

member of the equation. Hence the perpendicular distance

of any point from (i) is proportional to the result obtained
by substituting the co-ordinates in the expression

It. + mfi -\- ny -\- p8.

Hence, if I, m, n, p be equal to the lengths ofthe perpendiculars

from the angular points of the tetrahedron of reference, the
perpendicular distance of any other point (a

,
/3', y', 6') will

be W + mP' -f ny +ph'.

189. If a plane be at an infinite distance from the
angular points of the tetrahedron of reference, the perpen-
diculars upon it from those points are all equal.

Hence the equation of the plane at infinity is

OL+^ + y + h = 0.

This result may also be obtained in the following

manner.

Let ki, h(3y Icy, hh be the co-ordinates of any point ; then
the invariable relation gives kx -f kfi -^-ky ^kh — l, or

a + /3-|-7-f-S = 7^. If therefore k become infinitely great, we

have in the limit a-fyS + 7-fS = 0. This is the relation

which is satisfied by finite quantities that are proportional

to the co-ordinates of any infinitely distant point.

190. Let cfj, /5j,7^, 8^ be the co-ordinates of any point P,
and a, /5, 7, 8 the co-ordinates of a point Q. Also let 6^, 0,^, 6^, 6^
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be respectively the angles between the line PQ and the

perpendiculars from the angular points A, B, C, D of the

fundamental tetrahedron on the opposite faces.

Then, a, 6, c, d being the areas of the faces opposite to

A, B, C, D respectively, we have

a-a^ = ia.PQcos0^, jS - l3^ = ^h.PQ cos 6^,

ry —
Yj = ^c.PQ COS 0^, and S — 8^ = J cZ . PQ cos 6^.

The equations of the straight line through P, whose
direction-angles are 0^^, 0^, 6^, 0^, are therefore

a cos ^^ 5 cos 6^ c cos ^3 c? cos 6^
^

Since the sum of the projections of the four faces of the

tetrahedron on a plane j)erpendicular to PQ is zero, we have

a COB dj^ + b cos 0^ + c cos 0^-\- d cos ^^ = 0,

or, putting I, m, n, p instead of acos^^, hcosO,^, ccos6^,

d cos 6^ respectively,

I + ni + n-{- 2:> = 0.

Ex. 1. Find the conditions that three planes may have a common line of

intersection.

Ex. 2. Find the conditions that two planes may be parallel.

Ex. 3. Find the equation of a plane through a given point parallel to a

given plane.

[Any plane parallel to la + m^ + ny+p8= 0, is

Za + m/3 + 717 + i:»
5 + X (a + ^ + 7 + 5) = 0.

Hence the parallel plane through {a', /3', 7', 5') is

la + m^ + ny + p8= [W+ m^' + W7' +2)5') (a + /3 + 7 + 5).]

Ex. 4. The equations of the four planes each of which passes through a

vertex of the tetrahedron of reference and is parallel to the opposite face are

^ + 7 + 5==0, 7 + 5+a = 0, o + a + p= 0, and a + j3 + 7= 0.

Ex. 5. Find the condition that four given points may lie on a plane.

Ex. 6. Find the condition that four given planes may meet in a point.

Ex. 7. The equations of the four planes each of which bisects three of

the edges of a tetrahedron are

a= /3 + 7 + 5, /3 = 7+5 + a, 7= 5 + a + /3, and 5= a + /3 + 7.
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Ex. 8. Shew tliat the lines joining the middle points of opposite edges of
a tetrahedron meet in a point.

Ex. 9. Find the equations of the four lines through A, B, C, D respec-

tively parallel to the line whose equations are

la + TOjS + ny +jpd= 0, I'a + ni'^ + n'y +p'5= 0.

Ex. 10. A plane cuts the edges of a tetrahedron in six points, and
six other points are taken, one on each edge, so that each edge is divided
harmonically : shew that the six planes each of which passes through one of
the six latter points and through the edge opposite to it, will meet in a
point.

Ex. 11. Lines AOa, BOb, COc, DOd through the angular points of a

tetrahedron meet the opposite faces in a, b, c, d. Shew that the four lines of

intersection of the planes BCD, bed; CDA, cda; DAB, dab; and ABC^ abc
lie on a plane.

[If be (a', /3', y', d') the equation of bed is

^ + 2 + i_^=o.
/s'^y^y a'

"'

hence the line of intersection of BCD, bed is on the plane

„,+ .37 + 6 + 77 = 0.]
a p y

Ex. 12. If two tetrahedra be such that the straight lines joining

corresponding angular points meet in a point, then will the four lines

of intersection of corresponding faces lie on a plane.

191. We shall write the general equation of the second

des^ree in tetrahedral co-ordinates in the form

qa^ -f rjS^ + 57" + th^ + 2ff3y + 2gyoi + 2112/3

+ 2uah + 2v/3S + 2wyS = 0.

The left side of the equation will be denoted by
F{cL, A 7, 8).

192. To find the points where a given straight line cuts

the surface represented hy the general equation of the second

degree in tetrahedral co-ordiimtes.

Let the equations of the straight line be

I 'iu n p
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To find the points common to this line and the surface,

we have the equation

F {oL^ + Ip, /5, + mp, 7, + np, \ +pp) = 0,

„, ^ _ f,dF dF dF dF\
or F{cc„^„y,,c,) + p[l^ +m^^+n^+p-^J

+ p''F{l,m,7i,2y) = 0.

Since there are two values of p, the surface is a conicoid.

193. To find the equation of a tangent plane at any point

of a conicoid.

If (a^,
/^ij 7i J ^i) be a point on the surface, one root of the

equation found in the preceding article will be zero. Two
roots will be zero, if

,dF dF dF dF ^
l-T- + 'i^^:T^ +n-i- -^-p-jK- =0.
doi^ dp^ dy^ db^

The line will in that case be a tangent line to the surface.

Substituting for I, m, n,p from the equations of the straight

line, we obtain the equation of the tangent plane, namely

But, since the equation F(ol, ^, 7, S) = is homogeneous,

dF \ dF dF ^ dF ^

""^d^^^^^d^.-^-^^d^^^^dEr^'
therefore the equation of the tangent plane at the point

(at,, ^„ 7,, S^) is

dF ^dF dF ^dF ^

axj dp^ dy^ d\

104. It can be shewn by the method of Art. 53, that the

equation of the polar plane of any point (a^, ^^, 7^, 8J is

^dF o^, ^K + S^=o
d'x^ d(3^ dy^ dS^

195. To find the co-ordinates of the centre of the conicoid.

The polar plane of the centre is the plane at infinity,

whose equation isa + ^+7-f8 = 0.
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Hence, if (a^, /3j, 7,, 8J be the centre of the conicoid,

we must have

doLj^ dfS^ cZyj dh^'

19G. The diametral plane of a system of parallel chords

of the conicoid can be found from Art. 192. The equation

of the plane is

,dF
^

dF dF dF ^

^^ +^^ + ^^^+^^ = ^-

Since l + m-{-n+p=0 [Art. 190], it follows that all the

diametral planes pass through the centre, that is through the

point for which
dF_^dF^dF^dF
dj. dB d<y d8

'

197. To find the condition that a given plane may touch

the conicoid.

The condition that the plane Iol + m/3 + 717 -f pS = may
touch the conicoid can be found as in Art. 57. The result is

qr + Rm^ + Sn'' + Tp^ + 2Fmn + 2 Gnl

+ 2Hlm + 2Ulp + 2Vmp + 2Wnp = 0,

where Q, R, S &c. are the co-factors of q^ r, s &c. in the dis-

criminant.

198. To find the condition that the surface represented hy

the general equation of the second degree may he a cone.

The polar planes of the angular points of the fundamental
tetrahedron with respect to a cone meet in a point, namely
in the vertex of the cone. The equations of the polar

planes are

qoL -f hp + gy + u8 = 0,

ha+r^ + fry+v8 = 0,

gx +fP + 57 -\-iuh = 0,

and UOL -t- v^ -\-iuy + tB = 0.
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The required condition is therefore

<?, /^ g. u \=0.

h, r, f, V

U, V, w, t

190. To shew that any tiuo conicoids have a common self-

polar tetrahedron.

We can shew, as in Art. 142, that four cones can pass

through the intersection of any two conicoids, and that the

vertices of the four cones are the angular points of a tetrahe-

dron self-polar with respect to any conicoid through the

curve of intersection of the given conicoids.

The equation of a conicoid, when referred to a self-polar

tetrahedron, takes the form

For, since a = is the polar plane of the point (1, 0, 0, 0),

we have h=g = u = ; and similarlyf= v = w = 0.

200. To find the general equation of a conicoid circum-

scribing the tetrahedron of reference.

If we substitute the co-ordinates of the angular points of

the tetrahedron of reference in the general equation of the
second degree, we have the conditions q = r = s = t = 0.

Hence the general equation of a conicoid circumscribing

the tetrahedron of reference is

//^T + gy^ + ^^^/5 + uoih + v/SB + wyS = 0.

201. To find the general equation of a conicoid which
touches the faces of the tetrahedron of reference.

The planes a=0, /3 = 0, 7 = and 8 = will touch the
conicoid given by the general equation of the second degree if

§ = 0, E = 0, >Sf = and r= 0. [Art. 197.]

Hence conicoids which are inscribed in the tetrahedron of

reference are given by the general equation, with the con-

ditions Q = i^ = >Sf = T= 0.



TETRAHEDRAL CO-ORDINATES. 173

Ex. 1. Find the equation of a conicoid which circumscribes the tetra-

hedron of reference, and is such that the tangent planes at the angular points
are parallel to the opposite faces. Ans. ^y + ya+ a^+ad + ^8 + y8 = 0.

Ex. 2. Find the equation of the conicoid which touches each of the faces
of the fundamental tetrahedron at its centre of gravity.

Ans. a- + p'^ + y^ + d^ - ^y - ya- a^ - a8 - ^8 ~y8 = 0.

202. To find the equation of the sphere which circum-
scribes the tetrahedron of reference.

The general equation of a circumscribing conicoid is

fPy + gy^ + h-xP + uoih + vph + wyh = 0.

If the conicoid be the circumscribing sphere, the section

by 3 = will be the circle circumscribing the triangle ABC.
Now the triangular co-ordinates of any point in the plane

8 = 0, referred to the triangle ABC, are clearly the same as

the tetrahedral co-ordinates of that point, referred to the

tetrahedron ABCD. Hence, when we put S = in the equa-

tion of the conicoid, we shall obtain an equation of the same
form as the triangular equation of the circle circumscribing

ABC, Hence, comparing the equations

//37-f5r7a+ 7^3/3 = 0,

and BC^Py + CA'y% + AB'a^ = 0,

we obtain m =
UA:^

=
jB^'

By considering the sections made by the other faces of

the tetrahedron, we obtain the equation of the circumscribing

sphere in the form

BC^y + CA'ycL + ABh/S + AD'28 4- BD'jSB + CD'yS = 0.

203. To find the conditions that the general equation of
the second degree may represent a sphere.

Since the terms of the second degree in the equations of

all spheres, referred to rectangular axes, are the same ; if

>Si = be the equation of any one sphere, the equation of any
other sphere can be written in the form

S + loL + ml3 \- nr^ +ph = 0,

or, in the homogeneous form,

yS-h {h + ml3 + ny+p3) (a -f-/3 + 7 -f 6) = 0.
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If this be the same conicoid as that given by the general
equation of the second degree, ^' = being the equation of

the circumscribing sphere found in Art. 202, we must have,
for some value of X,

\q = l, \r = m, X5 = n, \t=p;
also 2\f=BC' + m + n,

and five similar equations.

r 4- s — 2fHence the required conditions are that ^ should

be equal to the five similar expressions.

The conditions for a sphere may also be obtained by
means of the equation found in Art. 192; or in the following

manner.
To find the points, P^, P^ suppose, where the edge BC

meets the conicoid given by the general equation of the
second degree, we must put a = 0, 3 = 0; and we obtain

r/3' + 57' + 2f/3y = ;

we have also jS -\-y = 1
;

... ^^2_^5(i_^)2 + 2//3(l-/3) = 0,

and, if the roots be jS^^, ^^, we have

^1^2 = r + s- 2/'

BO' '

hence, if the conicoid be a sphere, and if t^, t^, t^, t^ be the
lengths of the tangents from the points A, B, C, D
respectively, we have

r+ s — 2/_ s

BC ^ tj'

'

By considering the edges CD, CA we have similarly

s + t —2w _q + s — 2g s

CD' ~ CA' ^

^i^^'

Hence, as above, the required conditions are that—^^^
^

should be equal to the similar expressions.

Now /S,/?^-^^'^^^^^-
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Examples on Chapter IX.

1. Shew that, if qa" + r^'^ + sy" + ^8^ = be a paraboloid, it will

touch the eight planes a±^±y=t8 = 0.

2. The locus of the pole of a given plane with respect to a

system, of conicoicls which touch eight fixed planes is a straight

line.

3. The polar planes of a given point, with respect to a system

of conicoids which pass through eight given points, all pass through

a straight line.

4. If two pairs of the opposite edges of a tetrahedron are each

to each at right angles to one another, the remaining pair will be

at right angles. Shew also that in this case the middle points of

the six edges lie on a sphere.

5. Shew that an ellipsoid may be described so as to touch each

edge of any tetrahedron in its middle point.

6. If six points are taken one on each edge of a tetrahedron

such that the three lines joining the points on opposite edges meet
in a point, then will a conicoid touch the edges at those points.

7. If two conicoids touch the edges of a tetrahedron, the

twelve points of contact are on another conicoid.

8. If a conicoid touch the edges of a tetrahedron, the lines

joining the angular points of the tetrahedron and of the polar

tetrahedron will meet in a point.

9. Shew that any two conicoids, and the polar reciprocal of

each with respect to the other have a common sell-polar tetrahedron.

10. A series of conicoids Z7, , U„. U,... are such that U _^, and
. ,

1' 2' 3 r+1
t7._^ are polar reciprocals with respect to U^ ; shew that U^^^ and
f7._, are also polar reciprocals with respect to U^.

11. The rectangles under opposite edges of a tetrahedron are

the same whichever pair is taken
;
prove that the straight lines

joining its corners to the corners of the polar tetrahedron with
respect to the circumscribed sphere will meet in a point.
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12. If four of the eight common tangent planes of three

conicoids meet in a point, the other four will also meet in a point.

13. A plane moves so that the sum of the squares of its

distances from two of the angles of a tetrahedron is equal to the

sum of the squares of its distances from the other two
;
prove that

its envelope is a hyperbolic paraboloid cutting the faces of the

tetrahedron in hyperbolas each having its asymptotes passing

through two of the angles of the tetrahedron.

14. If ABCD be a tetrahedron, self-conjugate with respect to

a paraboloid, and DA^ DB, DC meet the surface in A^, £^, C\

respectively j shew that

PA
AA

DB,
+
BB,

DC,
J— —

?

GO,
= 1,

15. If a tetrahedron have a self-conjugate sphere, and if its

radius be B, prove that pr^=r^ = 5 ^77;

—

t- • where s is the sum of the
bit" zo — OS

'

squares of the edges of one face, and S the sum of the squares of

all the edges.

16. Shew that the locus of the centres of all conicoids which
circumscribe a quadrilateral is a straight line.

17. The locus of the pole of a fixed plane with respect to the

conicoids which circumscribe a quadrilateral is a straight line.

18. The polar plane of a fixed point with respect to any conicoid

which circumscribes a given quadrilateral passes through a fixed

line.

19. The sides of a twisted quadrilateral touch a conicoid;

shew that the four points of contact lie on a plane.

20. A system of conicoids circumscribes a quadrilateral : shew

(1) that one conicoid of the system will pass through a given point,

(2) that two of the conicoids will touch a given line, (3) that one

conicoid will touch a given plane. Shew also that the conicoids

are cut in involution by any straight line ; also that the pairs of

tangent planes through any line are in involution.

21. If three conicoids have a common self-polar tetrahedron,

the twenty-four tangent planes at their eight common points touch

a conicoid, and the twenty-four points of contact of their eight

common tangent planes lie on another conicoid.
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22. Nine conicoids have a common self-polar tetrahedron;

shew that the eight points of intersection of any three, the eight

jjoints of intersection of any other three, and the eight points of

intersection of the remaining three are all on a conicoid.

23. The sphere which circumscribes a tetrahedron self-polar

with respect to a conicoid cuts the director-sphere orthogonally.

24. The feet of the perpendiculars from any point of the

surface - + -t^ -\ 1--^ = 0, on the faces of the fundamental tetra-
a p y 6

hedron lie in a plane, a, h, c, d being proportional to the volumes
of the tetrahedron formed by the centre of the inscribed sphere

and the feet of the perpendiculars from it on any three of the

faces, and the co-ordinates being quadriplanar.

25. The middle points of the twenty-eight lines which join

two and two the centres of the eight spheres inscribed in any tetra-

hedron are on a cubic surface which contains the edges of the tetra-

hedron. Shew also that the feet of the perpendiculars from any
point of the cubic surface on the faces of the tetrahedron lie on a

plane.

26. The six edges of a tetrahedron are tangents to a conicoid.

The plane through the three points of contact of the three edges

which meet in the same vertex meet the face opposite to that

vertex in a straight line : shew that the four such lines are gene-

rators of the same system of an hyperboloid.

27. When a tetrahedron is inscribed in a surface of the second
degree, the tangent planes at its vertices meet the opposite faces in

four lines which are generators of an hyperboloid.

28. The lines which join the vertices of a tetrahedron to the

points of contact of any inscribed conicoid with the opposite faces

are generators of an hyperboloid.

29. The lines which join the angular points of a tetrahedron

to the angular points of the polar tetrahedron are generators of the

same system of a conicoid.

30. Cones are described whose vertices are the vertices of a
tetrahedron and bases the intersection of a conicoid with the oppo-

site faces. The other planes of intersection of the cones and
conicoid are produced to intersect the corresponding faces of the

tetrahedron. Prove that the four lines of intersection are genera-

ting lines, of the same system, of a hyperboloid.

S. S. G. 13



CHAPTER X.

Surfaces m Geneeal.

204. "We shall in the present Chapter discuss some
properties of surfaces of higher degree than the second.

205. Let F(x, y, z) = be the equation of any surface.

To find the points of intersection of the surface and the

straight line whose equations are

X— X _y — y' __z — z'

_

I tn n
'

we have the equation

F(x + Ir, y + mr, z' + nr) = 0,

or

„, , , „ f,dF dF dF\

If the equation of the surface be of the n^ degree, the

equation (i) will be of the ?^*^ degree. Hence a straight line

will meet a surface of the n^ degree in n points, and any
plane will cut the surface in a curve of the ?i*^ degree.

206. To find the equation of the tangent plane at any
point of a surface.

If {x', y, z) be a point on F (x, y, z) = 0, one root of the

equation for r, found in the preceding article, will be zero.
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Two roots will be zero if I, m, n satisfy the relation

,dF dF dF ^

^d^'^'^d^'^^'^dz'^^'LVtAy til U LL/J

The line will in that case be a tangent line to the surface

;

and the locus of all the tangent lines is found by eliminating

Z, m, n by means of the equations of the straight line. We
thus obtain the required equation of the tangent plane

, ,, dF , ,s dF , ,. dF -,

If the equation of the surface be z—f{x, y) = 0, it is easy

to deduce from the above, or to shew independently, that the

equation of the tangent plane at (x
, y , z) is

, , ,.df , ,. df

207. The two real or imaginary lines whose direction-

cOvsines satisfy both the relations

,dF dF dF ^
I -j-f +m -J-, -\r n -J-,

= Oi
ax ay dz

and (l -r-, + 'in-^—,-\-n -Y-,\ F=Qt
\ ax ay dz J

meet the surface in three coincident points.

Hence at any point of a surface two real or imaginary

tangent lines meet the surface in three coincident points.

These are called the inflexional tangents.

208. The tangent plane at any point of a surface will

meet the surface in a curve of the n^^ degree; and, since

every line which is in the tangent plane, and which passes

through its point of contact, meets the surface, and therefore

the curve of intersection, in two points, it follows that the

point of contact is a singular point in the curve of inter-

section.

When the inflexional tangents are imaginary, the point is

a conjugate point on the curve of intersection. When the

inflexional tangents are real, two branches of the curve of

12—2
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intersection pass through the point of contact ; and these

branches coincide when the inflexional tangents are coin-

cident.

209. Tlie section of any surface hy a plane 'parallel and
indefinitely near the tangent plane at any point is a conic.

Let any point on a surface be taken for origin, and let the

tangent plane at the point be the plane ^ = 0. Let the

equation of the surface be z —fix, y) ; then, since 2: = is the

tangent plane at the origin, we have

z = ax^ + 2hxy + hy"^

+ higher powers of the variables.

Hence, if we only consider points so near the origin

that we may neglect the third and higher powers of the

co-ordinates, the section of the given surface by the plane

z = k, is the same as the section of the conicoid whose equa-

tion is

z = ax^ + hif + 2hxy,

by the plane z = k', the section is therefore a conic.

The conic in which a surface is cut by a plane parallel and

indefinitely near the tangent plane at any point, is called the

indicatrix at the point ; and points on a surface are said to

be elliptic, j^cl'^cl^oUc, or hyperbolic, according as the in-

dicatrix is an ellipse, parabola, or hyperbola.

210. If, at the point (x, y, 2') on the surface F{x, y, z) = 0,

we have

dF _dF^^dF^
dx dy dz '

every straight line through the point (x\ y\ z) will meet the

surface in two coincident points.

Such a point is called a singular point on the surface.

All straight lines whose direction-cosines satisfy the relation

fid d , dV T^ ^

will meet the surface in three coincident points and are
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called tangent lines. Eliminating I, m, n, by means of the
equations of the line, we obtain the locus of all the tangent
lines, viz. the cone whose equation is

dy'dz ^ ' ^ ^ dz'dx'

+ 2(.-.')(y-y)^, = 0.

When the tangent lines at any point of a surface form a

cone, the point is called a conical point; and when all the

tangent lines lie in one or other of two planes, the point is

called a nodal point.

Ex. 1. Find the equation of the tangent plane at any point of the
2 2 2 2

surface x^ + y'^ + z^= a^', and shew that the sum of the squares of the inter-

cepts on the axes, made by a tangent plane, is constant.

Ex, 2. Prove that the tetrahedron formed by the co-ordinate planes,

and any tangent plane of the surface xyz= a^, is of constant volume.

Ex. 3. Find the co-ordinates of the conical points on the surface

X7JZ - a {x^ + y'^ + z-)+4:a^= 0; and shew that the tangent cones at the conical

points are right circular.

[The conical points are (2a, 2a, 2a,) {2a, -2a, -2a,) (-2a, 2a, -2a) and
(-2a, -2a, 2a), The tangent cone at the first point is

x^ + y^-hz^-2yz-2zx-2xi/= 0.]

Envelopes.

211. To find the locus of the ultimate intersections of a
series of surfaces, whose equations involve one arbitrary

parameter.

Let the equation of one of the surfaces be

F{x, y, z, a) = 0,

where a is the parameter.
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A consecutive surface is given by the equation

F (x, y, z,a+ Sa) = 0,

or F(x, y, z, a) +-^F(x, y,z,a)ha-\- = 0.

Hence, when ha is made indefinitely small, we have for the

ultimate intersection of the two surfaces the curve given by
the equations

d
F(w, y, z, a) = 0, and ^ F (x, y, z, a) = 0.

The required envelope is found by eliminating a from these

equations.

The curve in which any surface is met by the consecutive

surface is called the characteristic of the envelope. Every
characteristic will meet the next in one or more points, and

the locus of these points is called the edge of regression! or

cuspidal edge of the envelope.

212. To find the equations of the edge of regression of the

envelope.

The equations of the characteristic corresponding to the

surface F (x, y, z,a) =0 are

F {xy y, z, a) = and -y- F (x, y, z, a) = 0.

The equations of the next consecutive characteristic are

therefore

F{x, y, z, a+ Sa) = and -y- F (x, y, z, a + ha) = 0,

rr dF^
,

. .dF
^
d'F^

,

or F+ -^ oa + ,.. = 0, and -r~ + -r^^ ^^+ =0.
da da da

Hence at any point of the edge of regression we must have

dF d^FF = 0, :^ = 0, and^ = a
da da

The equations of the edge are found by eliminating a from
the above equations.
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213. The envelope of a system of surfaces, ivhose equation

involves only one parameter, will touch each of the surfaces

along a curve.

Let A, B, G he three consecutive surfaces of the system
;

and let PQ be the curve of intersection of the surfaces A and
B, and P'Q' the curve of intersection of the surfaces B and
G. Then the curves PQ and P'Q' are ultimately on the

envelope. Let R be any point on the curve PQ ; and let

>S^, T be two points, very near the point R, one on the curve

PQ, and the other on P'Q\ Then the plane R8T will in

the limiting position be the tangent plane at R both to the

surface B and to the envelope ; and hence the envelope

touches the surface B, and similarly every other surface of the

system, along a curve.

214. To fiyid the envelope of a series of surfaces ivhose

equations involve two arbitrary pai^ameters.

Let the equation of any surface of the system be

F{cc,y, z, a, h) = 0,

where a, h are the parameters.

A consecutive surface of the system is

F {x, y, z, a-\- Sa, b + Bb) = 0,

or F (x, y, z, a, h) + Sa
-J-

+ Bb -^ + = 0.

Hence, when 8a and Bb are made indefinitely small, we must
have at a point of ultimate intersection

F= 0, and Ba ^ + Bb ^=0,
da db

or, since Ba and Bb are independent,

T7 r\ dF ^ , dF f.F= 0, -y- = 0, and -tt = 0.
da do

Hence the curve of intersection of F with any surface

consecutive to it goes through the point which satisfies the



184 FAMILIES OF SURFACES.

e(iHation9

i?^= 0,^=0, and^=a
da do

The required envelope is found by eliminating a and h from
the above equations.

215. To shew that the envelope of a series of surfaces,

whose equations involve two arbitrary parameters, touches each

surface of the series.

Let the curves of intersection of the surface F with
consecutive surfaces of the system pass through the point P

;

then P is a point on the envelope. Let F^, F^ be any
two surfaces consecutive to F, and let Q, R be the points on
the envelope which correspond to these surfaces. Then all

surfaces consecutive to F^^ and therefore the surface F, will

pass through Q ; similarly the surface F will pass through R,
Hence, in the limit, the envelope and the surface F have the

three points P, Q, R, which are indefinitely near to one
another, in common ; they therefore have a common tangent

plane. Hence the envelope touches the surface F, and simi-

larly for any other surface.

Ex. 1. Find the envelope of the plane which forms with the co-ordinate

planes a tetrahedron of constant volume. Ans. a-?/2; = constant.

Ex. 2. Find the envelope of a plane such that the sum of the squares of
2 2 2

its intercepts on the axes is constant. Ans. a;^ + t/"3'+ 2'5'= constant.

Ex. 3. Find the equations of the edge of regression of the envelope of the
cz

T^l&ne X sin 9 - y cos 6= ad - cz. Ans. x' + y'= a^, y = xta,n — .

Families of Surfaces.

216. To find the general functional and differential equa-

tions of conical surfaces.

The equation of any cone, when referred to its vertex as

origin, is homogeneous ; and is therefore of the form

F g' !)=<'•
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Hence the equation of any cone whose vertex is at the

point (a, /3, 7) is of the form

pfx-a y^\Q
(i)_

This is the required functional equation.

The tangent plane at any point of a cone passes through
the vertex of the cone. Hence, if the equation F {x, y,z) =
represent a cone whose vertex is (a, /S, <y), we have

. .dF , ri\dF
, , . dF ^ ....

(^-c')^ + (y-^)^+ (--7)^=0 K
which is the required differential equation.

217. To find the general fimctional and differential equa-

tions of cylindrical surfaces.

A cylinder is the surface generated by a straight line

which is always parallel to a given straight line, and which
obeys some other law.

Let the equations of the fixed straight line be

X _ y _z
I m n'

The equations of any parallel line arc

X— OL y — ^ _z &,
I m n

the two constants a and yS being arbitrar^^

Now, in order that the line (i) may generate a surface,

there must be some relation between the constants a and /3.

Let this relation be expressed by the equation a =y(/9); then,

we have from (i)

or F (nx — Izy ny — mz) =0 (ii),

which is the required functional equation.
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The tangent plane at any point of a cylinder is parallel to

the axis of the cylinder. Hence, if the equation F{x, i/,z) =
represent a cylinder, whose axis is parallel to the line

aj_ y _ 2

I on n*

,dF dF dF ^
we have l-r-+m-Y- + n-r- = 0,

ax ay az

which is the required differential equation.

218. To find the general functional and differential equa-

tions of conoidal surfaces.

Def. a conoidal surface is a surface generated by the

motion of a straight line which always meets a fixed straight

line, is parallel to a fixed plane, and obeys some other law.

The surface is called a right conoid when the fixed plane is

perpendicular to the fixed line.

Let the fixed straight line be the line of intersection of

the planes

Ix + my + nz +p =0, l'x-\- m'y + n'z -\-p — ;

and let the fixed plane, to which the moving line is to be
parallel, be

"Xx + ^y + vz = 0.

The equations of any line which satisfies the given

conditions are

Ix + my + nz -\- p-\- A (I'x + m'y + nz-\-p) = 0,

and Xx + //,?/ + vz-^B = 0.

In order that the straight line may generate a surface,

there must be some relation between the constants A and B.

Let this relation be expressed by the equation A=f{B);
then we have

Ix + my -\- nz -\- p ^/^ , , \ r\
V r 7

—^/ =/ O^cc + iiy + vz) (i),

Ix + my -\-nz+p -^
^ ^^ ^ ^ ^

the required functional equation.

If we take two of the co-ordinate planes through the fixed

straight line, and the third co-ordinate plane parallel to the
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fixed i^lane, the above equation reduces to the simple form

^=/(-) (")•

The differential equation of conoidal surfaces which
corresponds to the functional equation (ii), can be readily

shewn to be

dx "^ dy

The differential equation may also be obtained as follows.

The generator through any point is a tangent line to the

surface ; and the condition that

X y '

may be on the plane

dF dF ^
is x-Y' + y -T-= 0.

ax *^ dy

Ex. 1. Shew that xyz = c (x--t/^) represents a conoidal surface.

Ex. 2. Find the equation of the right conoid whose axis is the axis of z,

and whose generators pass through the circle x= a, y^+z^= b^.

Ans. a-y^+ x"z^=h^x^.

Ex. 3. Find the equation of the right conoid whose axis is the axis of z,

and whose generators pass through the curve given by the equations
x=acosnz^y= aBinnz. Ans. y=xta,nnz.

Ex. 4. Shew that the only conoid of the second degree is a hyperbolic
paraboloid.

219. Cones, cylinders and conoids are special forms of

ruled surfaces. There are two distinct classes of ruled

surfaces, namely those on which consecutive generators inter-

sect, and those on which consecutive generators do not
intersect ; these are called developable and skew surfaces

respectively. We proceed to consider some properties of

developable and skew surfaces.
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220. Suppose we have any number of generating lines

of a developable surface, that is any number of straight lines

such that each intersects the next consecutive. Then, the

plane containing the first two lines can be turned about the

second line until it coincides with the plane containing the

second and third lines
;

, this plane can then be turned about
the third line until it coincides with the plane through the

third and fourth lines; and so on. In this way the whole
surface can be developed into one plane without tearing.

221. The tangent plane at any point of a ruled surface

must contain the generator through the point [Art. 129]. If

the surface be a skew surface, the tangent plane will be
different at different points of the same generator ; but, if the
surface be a developable surface, the tangent plane will be
the same at all the different points of a given generator, for

the tangent plane is the limiting position of the plane
through the given generator and the next consecutive

generator.

Since any tangent plane to a developable surface touches
the surface at all points of a straight line, it follows from Art.

213, that a developable surface is the envelope of a plane
whose equation contains only one variable parameter.

222. To find the general differential equation of develop-

able surfaces.

The tangent plane at any point of a developable surface

meets the surface in two consecutive generating lines which
are the two inflexional tangents at the point.

Hence, at any point of a developable surface, the two lines

given by the equations

,dF dF dF ^

ax ay dz

and (^ -7-+ m -T- -f- n ^1 i^'^^O,
V dx dy dzj

must coincide.
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The condition that this may be the case is

d'F d'F d'F dF
dx''

'

d'F

dccdy'

d'F

dxdy

d'F

dxdz ' dx

d'F dF
dif ' dydz' dy

d'F d^T dF
-^ ' dz

= 0. ,(i).

dxdz ' dydz ' dz^

dF dj^ dF
dx ' dy ^ dz

This is the required differential equation.

The differential equation may also be obtained from the
property, proved in the last Article, that a developable surface

is the envelope of a plane whose equation involves only one
parameter.

For, the general equation of the tangent plane of a
surface at the point (a?, y, z) is

Hence, if the surface is a developable surface, there must

be some relation connectinsr ~ and — ; that is, connecting:
° dx dy °

dz , dz
-r- and -T-
dx dy

we therefore have

Therefore

dx \dy)
*

d^z ^ „, /^
dx^ \dy

d'^

and
d^z

dxdy

^ d'j _
dx^ ' dy^

~

which is equivalent to (i).

= F'

Hence

dxdy*

dz\ d^z

dy) 'df*
/ d^z Y
\dxdyl

'
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223. We can find the equation of the developable

surface which passes through two given curves, in the follow-

ing manner. The plane through any two consecutive gene-

rating lines of the surface will pass through two consecutive

points on each of the given curves ; hence the tangent plane

to the required developable surface will touch each of the

given curves.

Now the equation of a plane in its most general form
contains three arbitrary constants, and the conditions of

tangency of the two given curves will enable us to express

any two of these constants in terms of the third, and the

equation of the plane will thus be found in a form involving

only one arbitrary parameter. The developable surface is

then obtained as the envelope of the moving plane.

Ex. Find the equation of the developable surface whose generating lines

pass through the two curves

2/2= 4ax, 2= and x^= iaij, z=c;

and shew that its edge of regression is given by the equations

cx^ - 3ayz=0= cy^ - Sax [c-z).

Let one of the tangent planes of the developable be lx + my + nz+l=0.
The plane touches the first curve, if lx + my + 1= touches y^-4:ax= 0; that
is, if l= am'^. The plane touches the second curve, if Ix +my + nc + 1 =
touches x^= 4iay; that is, if m {nc + l) = aP. Hence, the equation of the
tangent plane of the developable is found in the form

am"x + viy + {a^m^-l) - + 1 = (i).

The surface is therefore given by the elimination of m between (i), and

2amx + y + 3 =0 (ii).
c

For points on the edge of regression we have also

„ a^mz - ,...,
ax + d =0 (ill).

c ^ '

From (ii) and (iii) we have m= --^; and therefore, from (iii), cx'= 3ayz.

This is the equation of one surface through the edge of regression. "We

obtain another surface through the edge by substituting m= - — in (i) ; the

result is y'^z = x^ {c-z), and at all points common to the surfaces cx'^ = 3ayz,

and y^z =3i?{c-z), Vfe must have cy^= dax {c~z).
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224). To shew that a conicoid can he drawn which luill

touch any skew surface along a generating line.

Let AB, A'B' , A"B'' be three consecutive generators of

any skew surface. Then, [Art. 134], a conicoid will have
these three lines as generators of one system, and any line

which intersects the three given lines will be a generator of

the opposite system of the same conicoid. Through any
point Q on A E draw the line PQR to intersect the lines

AB and A"B". Then this line passes through three con-

secutive points of the given surface, and is therefore a taugent
line to the surface. Hence the plane through A'B' and PQR
touches both the given surface and the conicoid. Hence the

conicoid touches the given surface at all points of the line

A'B'.

By means of the above theorem many properties of a
ruled conicoid may be shewn to be true of all skew surfaces.

225. To find the lines of striction of any shew surface.

Def. The locus of the point on a generator of a ruled
surface where it is met by the shortest distance between
it and the next consecutive generator, is called the line

of striction of the surface.

If we know the equations of any generating line, we can
at once find the direction of the shortest distance between it

and the next consecutive generator, and this shortest distance

is a tangent line of the surface. Hence, in order to find the
point on the line of striction, which corresponds to any
particular generator, we have only to write down the con-
dition that the normal at a point on the generator may be
perpendicular to the shortest distance between the given
generator and the next consecutive.

Ex. 1. To find the lines of striction of the hyperboloid

x"^ y^ z^ ^—V- = 1.
a^ h'^ c^

The direction-cosines of a generator, and of the next consecutive
generator, are proportional respectively to

a sin d, -h cos 6, c, and a sin [Q-\-dd)^ -h cos {d + dd), c.
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Hence the directlou-cosines of the shortest distance are proportional to

- be sin 0, ca cos 6, ah.

Now, if (x, y, z) he the point where the shortest distance meets the con-

secutive generators, the normal at {x, y, z) must be perpendicular to the

given generator, and also to the shortest distance. We therefore have

% oj z
-sin^-r cos^-- = 0,
a b c

and -^sin ^- ^cos0 + „ = 0.
a^ b^ c^

Eliminating 6, we get for the lines of striction the intersection of the

surface and the quartic

Ex. 2. To find the lines of striction of the j)araholoid whose equation is

All the generating lines of one system are parallel to the plane

5_'/= (i).

a b

The shortest distance between two consecutive generators of this system will

therefore be perpendicular to the plane (i). Hence, at a point on the
corresponding line of striction, the normal to the sui'face is parallel to (i).

The equations of the normal at [x, y, z) are

1-3^ -n-v ^-g
X = y = -1 ,

a^ ~ b^

Hence one line of striction is the intersection of the surface and the plane

—f- -^ =0.

Similarly, the line of striction of the generators which are parallel to the

plane - + f = is the parabola in which the plane ^ - -4- = cuts the
a b a"^ b^

surface.

[See a paper by Prof. Larmor, Quarterly Journal of Mathematics,
Vol. XIX. page 381.]

226. To find the general functional and differential equa-

tions of surfaces of revolution.

Let the equations of the axis of revokition be

X — a _y — h _z~

c

I m n
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The equations of a section of the surface by a plane

perpendicular to the axis are of the form

and Ix + my + nz =p.

Hence, since there must be some relation between r^ and

p, the required functional equation is

(x - ay + {y- hf + (2- cy ==f{lx + my + nz).

The normal at every point of a surface of revolution

intersects the axis. The equations of the normal at the point

{x\ y'y z') of the surface F{x, y, z) = are

^ — ^' _y — y^ _ z — z

'W dF dF

'

dx dy dz

By writing down the condition that the normal may in-

tersect the axis, we see that at every point of the surface,

dF dF_ dF
dx * dy * dz

x^a, y — by z — c

Z, m, n

= 0;

this is the differential equation of surfaces of revolution.

Note. In the above, and also in Articles 216 and 217,

we have obtained the functional equation and the diffe-

rential equation by independent methods. The differential

equation could however in each case be obtained from the

functional equation; this we leave as an exercise for the

student.

For fuller treatment of Families of Surfaces the student

is referred to Salmon's Solid Geometry, Chapter xiii.

S. S. G. 13
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Examples on Chapter X.

1. Prove that a surface of tlie fourth degree can be described

to pass through all the edges of a parallelopiped, and that if it

pass through the centre it also passes through the diagonals of the

ligure.

2. Shew that at any point on the axis of z there are two
tangent planes to the surface a^y^ = x^ (c^ — z').

3. Pind the developable surface which passes through a

parabola and the circle described in a perpendicular plane on the

latus rectum as diameter.

4. Find the equation of the developable surface which
contains the two curves

y^ = Aax, z=0; and (y — by = 4:cz, x = 0;

and shew that its cuspidal edge lies on the surface

(ax + by + czf = Zahx {y + h).

5. The developable surface which passes through the two
circles whose equations are x^ + y^ = a^, z = 0, and x^ + z^ = c", y = 0,

passes also through the rectangular hyperbola whose equations are

z^ — ij^ = —z 5 and x = 0.

G. Prove that the surface

/a;' 2/' z\ _ (x^ y\ z^ , ^

has two conical points, and two singular tangent planes.

7. Explain what is meant by a nodal line on a surface, and
find the conditions for such a line on the surface ^ [x, y, z) = 0.

There is a nodal line on the surface z (x^ + y^) + 2axy = ;

find it.

8. Give a general explanation of the form of the surface

z {x^ + y^) = 2kxy. Shew that every tangent plane meets the

surface in an ellipse whose projection on a plane perpendicular to

the nodal line is a circle.
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9. Examine the general form of the surface

xyz — a^x — Ify — c^z + 2a6c = 0,

and shew that it has a conical point. Shew also that each of the

planes passing through the conical point and a pair of the inter-

sections with the axes touches the surface along a straight line.

10. If a ruled surface be such that at any point of it a straight

line can be drawn lying wholly on the surface and intersecting the

axis of z, then at every point of the surface

2 d^z ^ (Pz s^'^ _f\

dx^ ^ dxdy ^ d]f~

11. Shew that the surface whose equation is determined by
the elimination of $ between the equations

X cos 6 + y sin 6 = a^

x^in.9 — y cos = -(c9 — z),

is a developable surface, and find its edge of regression.

12. What family of surfaces is represented by the equation

z = <^(-p Describe the form of the surface whose equation is

sin~^ -=n tan~^ - . If w = 2, prove that through any point an

infinite number of planes can be drawn, each of which shall cut

the surface in a conic section.

1 3. At a point on the surface (x — y)z^ + ax{z + a) = there

is in general only one generator, but at certain points there are

two, which are at right angles.

14. Any tangent plane to the surface a (x^ + y^) + xyz =
meets it again in a conic whose projection on the plane of xy is a

rectangular hyperbola.

15. Shew that tangent planes at points on a generator of the

surface yx^ — a^z = cut cc = in parallel straight lines.

1 6. Prove that the equation x^ + y^ + z^— Zxyz = a^ represents

a surface of revolution, and find the equation of the generating

curve.

17. From any point perpendiculars are drawn to the

generators of the surface z(x^ + y') — 2mxy = 0; shew that the

feet of the perpendiculars lie upon a plane ellipse.

XO -w
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18. Shew that all the normals to a skew surface, at points on
a generator, lie on a hyperbolic paraboloid whose vertex is at the

point where the generator meets the shortest distance between it

and the next,

19. A generator PQ of the surface xyz — h(x^ + y^) = meets
the axis of z in P. Prove that the tangent plane at Q meets the

surface in a hyperbola passing through P, and that as Q moves
along the generator the tangent at F to the hyperbola generates a

plane.

20. Prove that all tangent planes to an anchor-ring which
pass through the centre of the ring cut the surface in two circles.

Also if a surface be generated by the revolution of any conic

section about an axis in its own plane, prove that a double tangent
plane cuts the surface in two conic sections.

21. Prove that a flexible inextensible surface in the form of

a hyperboloid of revolution of one sheet, cut open along a

generator, may be bent so that the circle in the principal plane

becomes the axis, and the generators the generating lines of a

conoid of uniform pitch inclined to the axis at a constant angle.

22. Prove that every cubic surface has twenty-seven lines

and forty-five triple tangent planes real or imaginary, and that

every cubic surface which has a double line is a ruled surface.

Discuss some properties of the surface whose equation is

y^ + x^z + yzw = 0.

23. Four tangent planes to any skew surface which are

drawn through the same generator have their cross-ratio equal
to that of their four points of contact.

21:. Any plane through a generator of a skew surface is a
tangent plane at some point F and a normal plane at some point

F' ; shew also that there is a point on the generator such that
the rectangle OF, OF' is constant for all planes through it.

25. Shew that the wave-surface, whose equation is

2 2 7,2 2 2 2ax by c z

x^ + y^ + z^- a^ x'^ + y^ + z^- b^ x" + y^ + z^- c

has four conical points, and four singular tangent planes.

= 0,



\

CHAPTER XI.

Curves.

227. We have already seen that any two equations will

represent a curve. By means of the two equations of the
curve, we can, theoretically at any rate, express the three
co-ordinates of any point as functions of a single variable ; we
may, for example, suppose the three co-ordinates of any point

of a curve expressed as functions of the length of the arc

measured along the curve from some fixed point.

228. To find the equations of the tangent at any 'point of
a curve.

Let X, y, z be the co-ordinates of any point P on the

curve, and let x+hx, y + hy, z \- hz be the co-ordinates of an
adjacent point Q. Then, if hs be the length of the arc PQ,
we have, since the arc is ultimately equal to the chord,

hx''-\-hy''-\-hz'=^^s^',

©'-(I)"-©"--
Also, since the direction -cosines of the chord PQ are

proportional to hx. By, Bz, and the tangent coincides with the

ultimate position of the chord, the direction-cosines of the

tangent are equal to

dx dy dz

ds' ds ^ ds*

so that the required equations of the tangent at {x, y, z) are

^-x r}-y _ ^-z
dx dy dz *

ds ds ds
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If the curve be the curve of intersection of the two surfaces

F{x, y,z) = Q and G {x, y, z) = 0,

the tangent line at any point is the line of intersection of the

tangent planes of the two surfaces at that point. Hence the

equations of the tangent at any point {x, y, z) are

(?-)f+(.-3/)f+(?-^)f=0,

229. To find on a given surface a curve such that the

tangent line at any point makes a maximum angle with a
given plane.

It is clear that the tangent line to such a curve at any
point is in the tangent plane to the surface at that point, and
is perpendicular to the line of intersection of the tangent

plane and the given plane.

Let the equation of the given plane be

Ix + my + nz = 0.

Then the direction-cosines of the line of intersection of the

given plane and the tangent plane at any point (x, y, z) of

the surface F [Xy y, z) = 0, are proportional to

dF dF dF ,dF ,dF dFm —, n-^ , n ^ I -y-
i

I -i m-^- ,

dz dy dx dz dy dx

The direction-cosines of the tangent to the curve are

dx dy dz

ds ' ds' ds'

Hence we have

dxf dF_ dF\ dyf dF _,dF\
ds\ dz dy) ds\ dx dz J

dzf dF_ dF\_Q
ds \ dy dx] ~ '

the required differential equation.
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If the given plane be the plane z = 0, the differential

equation of a line of greatest slope will be

dF dy dFdoc _^
dx ds dy ds

Ex. Find the lines of greatest slope to the plane 2;= on the right conoid

whose equation is x= yf (2).

The differential equation of the projection on 2= of a line of greatest

slope is X dx + ydy = 0.

Hence the projections of the lines of greatest slope on the plane 2= are

circles.

230. Definitions. If J., B, C be three points on a curve,

the limiting position of the plane ABC, when A, C are

supposed to move up to and ultimately to coincide with B, is

called the oscidating 2:>lane at B.

The circle ABC in its limiting position is called the circle

of curvature at B, the radius of the circle is the radius of
curvature, and its centre the centre of curvature at B.

The normals to a curve at any point are all in the plane

through the point perpendicular to the tangent to the curve

:

this plane is called the normal plane at the point.

The normal which is in the osculating plane at any point

of a curve is called the 'principal normal.

The normal which is perpendicular to the osculating plane

is called the hinormal.

The surface which is the envelope of all the normal planes

of a curve is called the polar developable.

The angle between the osculating planes at any two

points P, Q of a curve is called the whole torsion of the arc

PQ. The limiting value of the ratio of the whole torsion to

the arc is called the torsion at a point.

The radius of the circle whose curvature is equal to the

torsion of the curve at any point, is called the radius of torsion

at that point, and is represented by a.

The radius of the sphere which passes through four

consecutive points of a curve is called the radius of spherical

curvature.

Note. In what follows we shall have frequent occasion



200 CURVES.

to employ differential coefficients with respect to the arc ; and
"we shall for shortness write x ^ x", x" &c. instead of

dx d^x

~ds' di'
—o &C.

231. In the annexed figure A, B, C, D, E, F... are sup-

posed to be consecutive points of a curve, and p, q, r... are

the middle points of the chords AB, BG, CD..., Planes are
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drawn through, p, q, r... perpendicular to the chords AByBC,
CD..., and LP, MQP, NRQ... are the lines of intersection of

the planes through p and q, q and r, r and s,.... The lines pi,
qL are in the plane ABC, and perpendicular respectively to

AB and BC ; the lines qM, rM are in the plane BCD, and
perpendicular respectively to BC, CD.

Then, in the limit, when the chords AB, BC, CD..,

become indefinitely small the planes ABC, BCD,... become
osculating planes of the curve; the planes pLP, qMQ,...

become normal planes of the curve ; the points L, M, N be-

come centres of curvature of the curve ; the lines LP, MQP,
NRQ... become generating lines of the polar surface, and are

called polar lines; and the points P, Q, R... become con-

secutive points on the edge of regression of the polar

surface.

All points on the plane pLP are equidistant from A and
B, all points on the plane qMP are equidistant from B and
C, and all points on the plane rMP are equidistant from C
and D ; therefore a sphere with P for centre will pass through

A, B, C, D; hence the edge of regression of the polar surface

is the locus of the centre of spherical curvature.

232. To find the equation of the osculating plane at any
point of a curve.

Let P, Q, R be three consecutive points on the curve such
that PQ = QR = Bs ; and let 5 be the length of the arc

measured from some fixed point up to Q.

Then, if the co-ordinates of Q be x, y, z, those of P, for

which the arc is s — 65, will be, if we neglect powers of hs

above the second,

x" fc,
y" z"

X — xhs^-— hs", y — y'Bs + ^ 8s^ z — z'Bs + ~ Bs^;
^ A A

and the co-ordinates of R will be found by changing the sign

of Bs.

The equation of any plane through Q is of the form

X(?-a;)+i/(7;-2/)-t-iV(r-^) = 0.



202 THE PRINCIPAL NORMAL.

If this plane pass through the points P and R, we must
have

and, eliminating L, M, N, we have the required equation of

the osculating plane, namely

i-x,7]-y,^-z =0.
/ f r

X
, y , z

It If 1/

X
, y , z

233. To find the equations of the principal normal, and
the curvature, at any point of a curve.

Let P, Q, B be three points on a curve such that

PQ = QR = Bs.

Then, if V be the middle point of PP, QF is in the plane

PQR ; and, since the chords PQ and QR only differ by cubes

of ^5, QF is ultimately perpendicular to FR, and is therefore

the principal normal at Q.

Then, the co-ordinates of P, Q, R being as in the last

Article, the co-ordinates of F are

t" y" z"
^ + ^^s\ y + \^s\ z^'-Bs\

Hence the equations of QF are

S-x_7}-y ^-z
(i).

X y z

Again, the circle PQR, in its limiting position, is the

circle of curvature. Hence, if p be the radius of curvature,

we have in the limit

^P-QV'

But QV =^ (x" + y''' + z"), and FQ = Bs;

.\l, = x'" + y'' + z"\
P
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Hence, the direction-cosines of the principal normal, which
from (i) are proportional to x', y\ z\ are equal to

px\ py" and pz".

The co-ordinates of the centre of curvature are easily seen

to be
x + p'x", y + p'y\ z + pV\

234. To find the direction-cosines of the binormal.

The binormal is perpendicular to the osculating plane.

Hence, if I, m, 7i be the direction-cosines of the binormal, we
have from Art. 232

I _ m _ n
'/ 77 7 7/ '' 77 ' Ti 7 77 7 i •

y z — zy z X — xz xy —y x

But

{y'z" - zy'J -f iz!^' - xz'J -^ {xy" - y'xj
/ '2 1 '2 1 '2\ / "2 1 "2 1 "2\ / / " 1 ' '/ I » "\2= (a7^ + 2/^-F-s:')(a; " -^-y ^ + z ^)-{xx +yy' + zz f

_1

since x*^ -\-
y'"^ + z"^ =1,

and therefore xx" + y'y" -f z'z" = 0.

Hence the required direction-cosines are

p{yz -zy ), p(^« -xz ), pCa;^/ -3/^ ).

235. To find the measure of torsion at any point of a
curve.

Let I, m, n be the direction-cosines of the normal to the
osculating plane at P ; and let l + Bl, m+ Sm, n-\-Bn be the
direction-cosines of the normal to the osculating plane at Q,
where PQ = Bs. Then, if St be the angle between the
osculating planes, we have

sin'^ Bt = (mBn - nBmf H- (nBl - IBnf + (IBm - mBlf,



204 MEASURE OF TORSION.

Hence, in the limit, we have

fdT\^ _ / dn dmV / dl j dnV /, dm
\dsj ~

\ ds ds J \ ds dsj \ ds

diy

or, ~ = (mn' - miif + (nV - n'lf + {Im - VmJ (I).

Now 1 = p {ij'z" — zy")
;

, V t t in I r/f\ ,
f'P / I If I f/\:.l=p{yz -zy )-\--^^{yz -zy),

and similarly for m and 7i.

Hence mn — m'n = p^ {zx' — x'z") [xy" — y'oc")

— p [zx —xz
)
[xy —yx)

= p X X y z

X
, y , z'

X
, y y z

We can find similar expressions for nV — nl, and for

Im' — I'm ; and substituting in (i), we have

pV
^ , y > ^

X , y , z
itt I/' ft

X , y ,
z

236. To find the condition that a curve may he a plane
curve.

Let X, y, z be the co-ordinates of any point P on the

curve, expressed in terms of the arc measured from a fixed

point up to P ; and let Q be the point at a distance a
measured along the curve from P. Then the co-ordinates of

q will be
2 3
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If all points of the curve are on the fixed plane

Ax + By + C2 + I> = 0,

the equation

2 3

+ a ^^ + C7/ + 1 ^" + ^ z" + ...) + jD = 0,

will be satisfied for all values of a.

The coefficients of all the different powers of a must
therefore be zero. Hence we have

Ax' +BiJ +C/ =0,

Ax' ^-By" -^Cz" =0,

Ax'" + By'"+Cz" = 0.

The elimination oi A^ B, G gives

« , 2/ >

^ , 2/ ,

X y

= 0,

a relation which, since P is arbitrary, must be satisfied at all

points of the given curve.

From the result of the preceding Article it will be seen

that the above condition simply expresses the fact that the

torsion is zero at all points of a plane curve.

The condition that a curve may be a plane curve may
also be obtained in the following manner.

The direction-cosines of the normal to the osculating

plane are [Art. 234]

p\y z —zy)> p \zx —xz) and p {xy ^y x ).
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Since these are constant, we have

p(yV"-^y") + §(2/V'-^y')=o,

f I III I ff/\ , "'P f I ft f "\ r\

p [ZX — XZ ) +
-J-

{ZX —XZ)=0,

and p {xy" - yx") + -£ {xy" - y'x") = 0.

Multiply these equations in order by x", y", z" and add :

we then have
/' f ' 11/ ' ni\ , n / r >tr i iii\ , ir t r ni i iti\ r\X [y z —zy ) +y \z x — xz ) + z [xy —yx)=Of

which is the same condition as before.

237. To find the centre and radius of spherical curvature.

The locus of the centre of spherical curvature is the edge
of regression of the polar surface, that is of the envelope of

normal planes of the curve.

The equation of the normal plane at the point (x, y, z) is

{^-x)c; ^{^-y)y' + {X-z)z' = (i).

Hence [Art. 212] the corresponding point on the edge of

regression is the point of intersection of (i), and the

two planes

{^-x)x'^-{j^-y)y"^{X-z)z"
= x" + y"-\-z" = l (ii),

and {^-X)x"' + (rj-y)y"'j^{^-z)z"= 0...(iii),
lit. III, III f\

since XX +y y + z z =0.

238. In the figure to Art. 231, we have

p =pL = qL, p + Sp = qM = 7'il/,

and Sr = LqM=LPM.
If K be the point of intersection of MQP and qKL, we

have to the second order, Mq = Kq, and KP = LP

;

.-. LK = Bp,

and LP =-^ =~ ultimately (i).
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Also

dp
..R^ = P' + (Z (ii).

where R is the radius of spherical curvature.

Projecting the sides of the triangle KLP on the axis of

X, we have, if I, m, n be the direction-cosines of the binormal,

^p.px"-\-^l-'^[l-{-U)=0)
d d%

., „ 1^- ^ 1 // dp dl dl ds
thereiore ultimately - px = -r- • -r- = -r ~r" >

dr dp ds dr

or px" = al' (iii).

Since 1 = p {yz' — zy") [Art. 234] we have from (iii)

px =(Tp{yz -zy ) + o-^ [y ^ -zy ).

Similarly py' = (Tp [zx" — x z") + <^

-f
{^'^" — ^'^")>

and pz" = ap {xy'" - yx'") + crg (x'y" - y'x).

Multiply the last three equations by x\ y" , z" respectively

and add ; then we have, as in Art. 235,

A
X

, y

yX

X y"\ z'

.(iv).

239. Since, in the figure to Art. 231, M and L are the

feet of the perpendiculars from q on two consecutive tangents

to the curve PQ^R, if we substitute P, p and r for r, p, yjr in

dr d^D
either of the known formulae r -j- ot p + -y-fa foi" the radius

dp ^ dyjr

of curvature of a plane curve, we shall obtain the radius of

curvature of the edge of regression.
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Hence the radius of curvature of the edge of regression is

equal to

^ dR ^ d^p

[For this and the preceding article see a paper by
Dr Routh, Quarterly Journal, Vol. vii.]

240. The following examples will illustrate the use of

the different formulae we have investigated in this chapter.

Ex. 1. To find the curvature and the torsion of a helix,

A helix is a curve traced on a right circular cylinder so as to cut all the
generating lines at the same angle. Its equations are easily seen to be

ir= acos 6, y= asm.6, z = ad i&na.

Hence a;'=-asin^. 6', y'=acosd .e\ s'= atana. d'.

Square and add, then 1= a^'^ sec^ a.

COS CL COS CL

"We therefore have x"= - cos 6 , v"= - sin , z"= ;

a ^ a

and also

Hence

and

x'"= -2 sin d cos3 a, y'"= -
^^^ cos ^ cos^ a, z'"^ 0.

cos^a

a"

a
., ,Orp=: — -:5—

;

i^ ' ^ cos^a

- sin B cos a, cos B cos a, sin a

cos B cos^ a, — sin cos^ a.
a a

-oSin^cos^a, —^.cos^cos^a,
a- a^

~ --, cos" a sm a

;

a"*

a

sin a cos a

It should be noticed that the principal normals all intersect perpendicularly
the axis of the cylinder. This is seen at once by writing down the equations
of the principal normal at B, namely

x-a cos B _y -a sin 6 _z-ad tan a

cos^ "" ^md ~
•
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Ex. 2. To find the equations of the principal normal, and of the
osculating plane at any point of the curve given by the equations

x= 4:a cos^ 6, y= 4:a sin^ d, z= dc cos 2d.

We have x'= - 12a cos^ ^ sin . 6',

y'= 12a sin2 cos . e',

z'= -6c sin 2^ . 6'.

Square and add, then 1= Q J {a^ + c^) siii2e .
6'.

Hence ^'=--n-r—aT^os^, 2/'=-77-^

—

-sind, z'= --ry-^—sv

;

•••^'-121^2)^^^^' 2^' -12]^^°^^^^' ^" = ^-

The equations of the principal normal are therefore

x-4:aco&^d _y -4a sin^ _ 2 -3c cos 29

sin " cos ~ '

The equation of the osculating plane is

x-4:a cos^ 6, y~4:a sin^ 0, z-3c cos 2^ ' = 0.

- a cos 0, a sin ^, - c

sin ^, cos ^,

Ex. 3. To find to the third order the co-ordinates of any point of a curve
in terms of the arc, when the axes of co-ordinates are the tangent, the principal
normal, and the hinormal at the point from which the arc is measured.

Let OX, OY, OZ be the tangent, principal normal, and binormal at the
point of a curve. Let x, y, z be the co-ordinates of a point at a distance s

from 0, and let - and - be the curvature and torsion of the curve at 0.
P

0-

Then, at the origin, a;'= l, 2/'=^, z'= 0',

also px"=0, py"=l, z"=0.

"We have, at any point of the curve,

x'x"-ty'y"-hz'z"=0.

Differentiating, we have

^, + x'x"'-hyY'+ z'z"'= '(i).

P

Also, by differentiating

1
^'2
f:=x"^ + y"^ + z'

we have at any point

S. S. G. 14

\^=x"x"'+y"y"' + z"z"' (ii).

p^ ds
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Also we know that

1
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7. If a circular helix be drawn passing through four con-
secutive points of a curve in space, prove that when the four

2

points ultimately coincide the radius of the helix equals -^— , and
p-' + a-'

its slope is tan~^ - .

cr

8. Shew that if the osculating plane at every point of a
curve pass through a fixed point, the curve will be plane.
Hence prove that the curves of intersection of the surfaces whose

equations are x" + y'^ + z' = oJ^, and x^ + ')/ + z^ = —- are circles of

radius a.

9. Prove that the helix is the only curve whose radius of
circular curvature and radius of torsion are both constant.

10. A curve is drawn on the cylinder whose equation is

62 2. 22 2i2 f\X + ay — a = 0,

cutting all the generators at an angle a ; shew that its radius of

curvature at any point is p cosec^ a, where p is the radrus of

curvature of the principal elliptic section through the point.

11. If a curve in space is defined by the equations

x = 2a cos f, y = 2a sin t, z = hf,

prove that the radius of circular curvature is equal to

«v {a' + W+hH'i'

12. In any curve if B be the radius of spherical curvature,

p the radius of absolute curvature and- the tortuosity at any

point {x, y, z), then

, f/d'x\' /d'yV /cl^zV)
^

R'

13. If the tangent and the normal to the osculating plane at

any point of a curve make angles a, yS with any fixed line in space,

shew that ~—^ • -77; = - , where - , — are the curvature and
sm /j a/3 p

'

P o-

tortuosity respectively.

14—2
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1 4. Find tlie curvature and torsion at any point of the curve

in question 5.

15. Prove that the origin is the centre of absolute curvature

of the curve a:t? + hif + c;s^ = 1, rx^ + r'lf + r^ = 1 at all points,

whose co-ordinates satisfy the equation

a—r . h-r . c—r . _

X* 4-
2/
+ T ^ = ^'

b — c c — a a —

16. A curve is drawn on a right circular cone always inclined

at the same angle a to the axis
;
prove that (T = p tan a.

17. If p, cr be the radii of curvature and torsion at any point

of a curve in space ;
p', a similar quantities at the corresponding

point of the locus of the centre of spherical curvature, then

pp = era

,

18. Every portion of a curve is equal and similar to the

corresponding portion of the edge of regression of the polar sur-

face
;
prove that the tangent to it makes an angle of 45" with a

lixed plane, and that its projection on that plane is the evolute of

a circle.

19. Shew that if along the tangent to any curve a point.be

taken at a constant distance c from the point of contact of the

tangent to the given curve, and if pj be the radius of curvature in

the osculating plane of the curve traced out by the point, then

w^here p and o- are the radii of curvature and torsion of the given

curve.

20. A circle of radius a is traced on a piece of paper, Avhich

is then folded so as to become a cylinder of radius b; shew that, if

p be the radius of curvature at any point of the curve which theIlls
circle now becomes, then —5 — -s + ri cos*-, where s is the distance,

p a a
measured along the arc, of the point from a certain fixed point of

the curve.
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Curvature of Surfaces.

241. We have already seen, in Art. 209, that the section

of any surface, by a plane parallel to and indefinitely near
the tangent plane at any point on the surface, is a conic,

which is called the Indicatrix, and whose centre is on the
normal at 0.

242. Let any section of the surface, drawn through the
normal OV, cut the indicatrix in the diameter QVQ\ and let

p be the radius of curvature at of the section. Then we
have, in the limit, 2p. OV=QV^. Hence, for different

normal sections through 0, the radius of curvature varies as

the square of the diameter of the indicatrix through which
the section passes.

243. Since the sum of the squares of the reciprocals

of any two perpendicular semi-diameters of a conic is

constant, it follows from the last article that the sum of the
reciprocals of the radii of curvature of any two perpendicular

normal sections through a given point of a surface is con-

stant.

244. Since the semi-diameter of a conic has a maximum
and a minimum value, it follows from Art. 242 that the
radius of curvature of a normal section through any point of

a surface has a maximum and a minimum value, the corre-

sponding sections being those which pass through the axes of

the indicatrix.
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The maximum and minimum radii of curvature are called

the 'principal radii of curvature, and the corresponding

normal sections are called the principal sections.

The locus of the centres of principal curvature at all

points of a given surface is called its surface of centres.

245. If the axes of x and y be taken in the direction of

the axes of the indicatrix the equation of the surface will he,

when the terms of the third and higher orders are neglected,

2z = ax^ + hif.

Let /Oj, p2 be the principal radii of curvature, that is the

radii of curvature of the sections made by the planes y = 0,

^ = respectively; then it is clear that pj = -, and/02 = -, .

Hence the equation of the surface will be

^ ^ y

Pi P2

The semi-diameter of the indicatrix which makes an
angle with the axis of x is given by

2z cos-^ sin'^
Iir
= H •

^ Pi P2

If p be the radius of curvature of the corresponding

section, we have r^ = 2pz.

T-r I cos^^ sin^^
Hence - = ! .

P Pi P2

The results of Articles 243, 244 and 245 are due to Euler.

246. When the indicatrix at any point of a surface is an

ellipse, the sign of the radius of curvature is the same for all

sections ; this shews that the concavity of all sections is

turned in the same direction, so that the surface, in the

neighbourhood of the point, is entirely on one side of the

tangent plane. The surface in this case is said to be

Spiclastic at the point.

When the indicatrix is an hyperbola, the sign of the

radius of curvature is sometimes positive and sometimes
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negative, shewing that the concavity of some sections is

turned in opposite directions to that of others. The surface

in this case is said to be Anticlastic at the point.

The radius of curvature of a section which passes through

an asymptote of the indicatrix is infinite ; hence the

asymptotes divide the sections whose concavity is turned one

way from those whose concavity is turned the other way.

In the figure of Art. 71, the concavities of the sections

by the planes x = and y = are turned in opposite direc-

tions ; and the normal sections through the two generating

lines at are the sections of zero curvature.
s

When the indicatrix is a parabola, that is to say is two

parallel straight lines, which become ultimately coincident,

one of the principal radii of curvature is infinite ; and, if p^

be the finite radius of principal curvature, the curvature of

any other normal section is given by the lormuia - = .

247. To find the radius of curvoiure of any oblique

section of a surface.

Let any oblique section through the point of a surface

cut the indicatrix in the line JRKR', and let the normal
section through the same tangent line cut the indicatrix

in the line Q VQ' parallel to RKE . Let K, V be the middle

points of MR', QQ' respectively, and let p, p^ be the radii of

curvature of the sections ROR', QOQ' respectively.

Then we have, in the limit,

2p.0K = RK^,

and 2p^.JV=QV\
But OV, and therefore VK, is small compared with QV;

hence RR' and QQ' are ultimately equal. Also

0F=0^ cos 6*,

where 6 is the angle between the planes ROR' and QOQ'.
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Hence we have ultimately,

or P — po cos 0.

This is called Meunier's Theorem.

248. From Meunier's Theorem, and the theorem of Art.

245, it follows that if two surfaces touch one another, and
have the same radii of principal curvature at the point of

contact, then all sections through that point have the same
curvature.

249. The following proof of Meunier's Theorem is due to

Dr Besant.

Let OT be any tangent line at the point of a surface,

and let P be a point contiguous to on the normal section

through OT, and Q a point contiguous to on an oblique

section through OT. Then a sphere can be described to

touch OT at 0, and to pass through P and Q; and the

sections of this sphere by the planes TOQ, TOP are

ultimately the circles of curvature at of the sections of

the surface by those planes. Hence, as Meunier's Theorem
is obviously true for a sphere, it is true for the surface.

Ex. 1. Find the principal radii of curvature at the origin of the surface

2z = 6x2 -Sxy- 6y'-. Ans. ^%, - -^\.

Ex. 2. Find the radius of principal curvature at any point of the curve

of intersection of two surfaces.

Let p be the required radius of curvature at any point P. Let the

surfaces intersect at an angle a, and let 6, a- 6 be the angles between the

principal normal of the curve of intersecticn, and the normals to the two
surfaces. Let p^, p^ be the radii of curvature of normal sections of the two
surfaces through the tangent Hne at P. Then, by Meunier's Theorem,

p=Pi cos 6, and p= P2 cos (a - 6).

Hence, eliminating d, we have

sin2a_ 1 1 2 cos a

P' Pi' Pi PiP-2.
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250. Def. a line of curvature on any surface is a curve

such that the tangent line to it at any point is a tangent line

to one of the principal sections of the surface at that point.

251. The normals to any surface at consecutive points of
one of its lines of curvature intersect.

Let P be an extremity of an axis of the indicatrix which
corresponds to the point of a surface, then 0, P are

consecutive points on a line of curvature.

Let V be the centre of the indicatrix, then OV will be

the normal to the surface at 0.

The tangent line at P to the indicatrix is perpendicular

to the normal to the surface at P ; it is also perpendicular to

OV; and, since P is an extremity of an axis of the indicatrix,

the tangent line is perpendicular to PV. Hence OF, PV,
and the normal at P are in a plane, and therefore the

normals at and P will intersect.

Conversely, if the normals at P and intersect, the tan-

gent line at P to the indicatrix will be perpendicular to the

plane which contains the normals at and P ; therefore the

tangent line will be perpendicular to PF, and hence PF is

an axis of the indicatrix.

252. To find the differential equations of the lines of
curvature on any surface.

Let F{x, y, z) — be the equation of the surface. Then
the equations of the normal at any point {x, y, z) are

^ — x_r} — y_ ^— -g

'dF^'lF dJ^
'

dx dy dz

The normal at the consecutive point

{x -^dx, y + dy, z + dz) is

^— x — dx 7) — y — dy t,— z — dz

dF ^fdF\ ~^ , ^ (dl\
~ dF /dF^

dx \dxj dy \dy J dz \dz ^
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The condition of intersection of the two normals gives
tlie equation

clF

dx '

clF

dz

dF
dz

^m, dr'
\dx J Uy}' '^{dlj

= 0...(i).

Since (x -\- dx, y + dij, z + dz) is on the surface, we have
also

dF , dF , dF
, ^ ,..,-dx + ^dy + ^dz=0...{n).

The equations (i) and (ii) are the required differential

equations.

253. To find the principal radii of curvature, and the

lines of curvature, on a surface of revolution.

It is clear that the normals to the surface at all points on
a meridian lie in the plane through the axis and that
meridian

; hence normals at consecutive points on a meridian
intersect, so that any meridian is a line of curvature. It is

also clear that the normals to the surface at all points of any
circle whose plane is perpendicular to the axis of the surface,

meet the axis in the same point, and therefore any such
circle is a line of curvature. Hence the lines of curvature
are the meridians, and the circular sections which are per-

pendicular to the axis.

It is easy to see that one of the principal radii at any
point P is the radius of curvature of the generating curve at

P ; and that the other principal radius is the length of the
normal intercepted between P and the axis.

254. The tangent plane to a developable touches the
surface at all points of a generating line. The normals
to the surface at all points of a generating line are therefore

parallel; hence normals at consecutive points intersect, so

that one set of the lines of curvature of a developable are the
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generating lines, the corresponding radii of curvature being

infinite.

The other lines of curvature are carves which cut all the

generating lines perpendicularly ; and hence, if the surface

be developed into a plane, the lines of curvature will become
involutes of the curve into which the edge of regression

developes.

In the particular case of the developable being a cone,

the lines of curvature will cut the generating lines at a

constant distance from the vertex, and hence they are the

curves of intersection of the surface and spheres with the

vertex for centre.

Ex. 1. Find the surface of revolution whicli is such that the indicatrix

at any point is a rectangular hyperbola.

The principal radii of curvature must be equal and opposite at any point.

Hence the radius of curvature at any point of the generating curve must be
equal and opposite to the normal: this is a known property of a catenary.

Hence the surface is that formed by the revolution of a catenary about
its axis.

Ex. 2. Shew from the general differential equations of lines of curvature,

that one system of lines of curvature on a cone are the generating lines,

and the other system are the curves of intersection of the surface and con-

centric spheres.

The equations are

dx

dF
dx

dy

dF
dy

dz

dF
dz

fdF^

(^)' "(f)' 'K^)

and
dF dF dF

(i),

dx^''^'dbj'^y^~dz'^'=^jXJu ^^U v4/^

.(ii).

Since the surface is a cone whose vertex is at the origin, we have

dF dF dF ^
' dx dz

.(iii),

therefore from (ii)

^Ks)-''(f)
\-zd

'i)-"-
(iv).
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Multiply the terms of the columns in (i) by x, y, z respectively, and add

;

then on account of (iii) and (iv), (i) will become

dx
,

dij , xdx + ydy + zdz ]=0.

dF dF
dx * dy

, fdF\ ^ fdF\

Ileuce either xdx + ydy + zdz = (v),

1(1) <|) £

^

dF dF dF
^/- (vi).

dx dy dz

From (v) we have ar + 2/^ + 2^= constant,

shewing that one series of the lines of curvature are the curves of inter-

section of the surface and concentric spheres.

From (vi) we have
dF dF dF
dx _ dy _ dz

I m n *

where /, m, n are constants. Hence, from (iii), we have

Ix + my + nz= 0,

which shews that the other series of lines of curvature are the generating

lines.

Ex. 3. If two surfaces cut one another at a constant angle, and the
curve of intersection be a line of curvature on one of the surfaces, it "will be
a line of curvature on the other.

Let P, Q be any two consecutive points on the curve of intersection, and
let Oab be the line of intersection of the normal planes of the curve at P, Q,
where is in the osculating plane of the arc PQ. If the curve of inter-

section be a line of curvature on one of the surfaces, the normals to that

surface at P, Q must intersect, they will therefore meet the line Oab in the
same point, a suppose.

Let the normals to the other surface at P, Q meet Oab in c, c' respectively.

The triangles OFa, OQa are equal in all respects, for PO= QO, Pa = Qa,
and Oa is common. And, since the surfaces intersect at a constant angle,

the angles aPc and aQc' are equal. Therefore the angle OPc, OQc' are equal.

But the angles POc, QOc' are equal, and PO = QO. Therefore Oc=Oc'.
This proves the proposition.

Ex. 4. If the line of intersection of two surfaces be a line of curvature

on both, the two surfaces cut at a constant angle.

For let P, Q be any two consecutive points on the curve of intersection

;

let the normals to one surface at P, Q meet in a, and the normals to the
other surface meet in b. Then, we have Pa=Qa, Pb = Qb, and ab common
to the two triangles aPb, aQb. Hence the angles aPb and aQb are equal.
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Ex. 5. If a line of curvature be a plane curve its plane will cut the
surface at a constant angle.

Any line is a line of curvature on a plane (or on a sphere). The theorem
therefore is a particular case of Ex. 4.

255. If three series of surfaces intersect at right angles at

all their common points, the curve of intersection of any tiuo

is a line of curvature on each. (Dupin's Theorem.)

Take for origin a point of intersection of three of the
surfaces, one of each series, and let the three perpendicular
tangent planes be taken for co-ordinate planes. The equa-
tions of the three surfaces will then be

^x+ay" -\-h£' -\-2hyz 4- = (i),

2y + aV -I- 6V -f ^Kzx + = (ii),

2z+a"(c'+Vy'+2h"xy-\- = (iii).

At a consecutive point common to (i) and (ii) we have
^ = 0, y = 0,z = z', where z' is very small ; and the tangent

planes to (i) and (ii) at (0, 0, /) are ultimately

X + hzz + hyz = 0,

y + a!zz-\- h'xz = 0.

The condition that these may be at right angles gives

or, ultimately, h + h' = 0. We have similarly, since the other

surfaces cut at right angles, h' + K' = 0, and h" -\-h = 0.

Hence h = li =h'' = 0, and therefore the axes are tangents to

the lines of curvature on each surface. This being true at all

points of intersection of three surfaces, it follows that all

curves of intersection of two surfaces of different systems are

lines of curvature on each.

We have proved in Art. 164 that confocal conicoids cut

one another at right angles at all their common points.

Hence, one system of the lines of curvature of an ellipsoid

are its curves of intersection with confocal hyperboloids of one
sheet, and the other system of lines of curvature are the

curves of intersection with confocal hyperboloids of two sheets.
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256. To find the 7)?'i/ici2^a^ radii of curvature at any
'point of a surface.

Let f, 77, ^ be the co-ordinates of the point of intersec-

tion of the normals at two consecutive points (oc, y, z) and
{x -{- dx, y + dy, z + dz) of a surface, and let p be the radius

of curvature at (^, y, z) of the normal section through those

points. Then [Art. 251] p is one of the principal radii of

curvature, and we have

^ — x v — y _ K— ^ P P

dx dy dz y ]}\dx ) \dy) \dz ) ]

^
odF odF ^ ^pclF
K dx "^ K dy K dz

And, since (^, rj, f) is also on the normal at {x + dx,

y j^ (Jy^ z + dz^, we have by differentiating the preceding

equations, considering ^, 77, f, p as constant,

and tw^o similar equations.

Since
^dF\ d'F , d'F , d'F

\dx) dx^ dxdy dxdz "^

and similarly for d i—r-
j
and d

(
;t -) , the equations may be

written

^ /«r d''F\ , d'F , d'F , dfc dF
= - +-T-^ ) dx + -j—j- dy + -j-~r- dz -7-

,

\p ax J dxdy ^ dxdz k dx

^ d'F , fK crF\ , d'F , dKdF
^ = :r-j- dx + [-^ -^—, dy + -7—7- dz -y-

,

dxdy \p dy J '^ dydz k dy

d^'F , d'F , [k d'F\ , die dF
dxdz dydz ^ \p dz^ J k dz

We have also

^ dF, dF , ^ dF,= -Y- dx -h -T- dy + -f- dz.
dx dy '^ dz
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Eliminating dx, dy, dz, die we have for the determination

of the principal radii the equation

fc d^
p^ dx"

d'F

dxdy'

d'F

d'F

dxdy '

K d'F

p-^df'
d'F

d'F

dxdz'

d'F

dydz '

fc cFF
p'^ dz''

dF
dz'

dF =0.

dx

dF
dy

dF
dzdx dz ' dy dz

'

dF dF
dx^ dy'

257. To find the umhilics of any surface.

At an umbilic the indicatrix is a circle.

Let the equation of the surface be F {x, y, z) = 0, and
let {x, y\ z) be any point on it. The equation of the surface

referred to parallel axes through {x\ y\ z) will be

dF dF dF , f d d ^^y r _
dy' dzjdx' dy' dz \ dx

Hence the indicatrix is similar to the section of the

conicoid

d^F 2 d'^F , d'F . ^ d'F
dx'' dy' dz

yz
dy dz

^ d'F ^ d'F , ^ ...

+ 2 , , , , zx-\-2-r-T-r-r^I/-\- 1 = ...(i),
dz'dy dx dy

by the plane

dF dF dF
ax '^ dy dz

0. .(ii),

and we have already found [Art. 125, Ex. 5] the conditions

that a given section of a conicoid may be circular.

From the result of Art. 256 it is clear that the two values

of - are the squares of the axes of the section of (i) by (ii).
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258. To find the radii of principal curvature, and the

lines of curvature, of the surface ivhose equation is z =f{oc, y).

Let (f, 7;, f) be one of the centres of principal curvature

at the point (x, y, z), and let p be the corresponding radius

of curvature. Then, the equations of the normal at {x, y, z)

AY ill be

^-x_7j^y_^—
z p

therefore ^— x = —p (^ — z),

and 7}-y = -q(^-z).

Since the normal at (x+dx, y + dy, z + dz) also passes

through (f, 7], f) we have, by differentiating the preceding

equations,

— dx = —dp (f— z) + pdz,

and —dy = — dq (f— z) + qdz

;

that is —dx=p (pdx + qdy) ~ (^—z) (rdx + sdy).. .(i)

and — dy = q {pdx + qdy) — (^— 3) (sdx + tdy) . .
.
(ii).

Eliminating ^—z from (i) and (ii) we have

(1 + p^) dx +pqdy _ pqdx + (1 + q^) dy
_

rdx + sdy sdx + tdy '

therefore (1 +/) 5 -pqr + {(1 +p')t-{l+ q") r]^
+ {pqt-s(l+q^)}[^J = 0...(iii),

which is the differential equation of the projection of the
lines of curvature on the plane z= 0.

Again, from (i) and (ii) we have, putting k for

Jl+p' + q\

{^+P' + '^)do^+[pq + f)dy= 0,

and
(^2 + Tt)

^'^'^ (^ "^ ^'"^
^)

^^^^'



GAUSS' aiEASURE OF CURVATURE. 225

Heuee (1+/ +
^)

(l + 3" + J)
-

(pg + f)
= 0,

or

(rt -s') p'' -h K {t(l +p') -{- r (1 + q') - 22Jqs] p -h k'' = 0...(iv),

which is an equation giving the principal radii of curvature.

259. At an umbilicus the directions of principal curva-

ture are indeterminate ; hence the conditions for an umbilicus
are, from equation (iii) of the last Article,

1 +p^ _ l-\-q^ _pq
r t s '

260. Def. The ivhole curvature of any portion of a
surface, bounded by a closed curve, is equal to the area cut

off from a sphere of unit radius by radii which are parallel to

the normals to the surface at all points of the curve.

The average curvature of any portion of a surface is the
ratio of the whole curvature to the area of that portion.

The measure of curvature at any point is the average

curvature of a very small portion which includes the point.

These definitions, which are analogous to the definitions

in plane curves, are due to Gauss.

The curve traced out on the unit sphere as above is

called the horograph of the given portion of the surface.

261. To sheiu that the measure of curvature at any point

of a surface is the reciprocal of the product of the principal

radii of curvature of the surface at that point.

Consider a small portion PQRS of the surface bounded
by lines of curvature ; then PQRS is ultimately a rectangle

whose area is PQ . PS.
Let lines parallel to the normals at P, Q, R, S, drawn

through the centre of a sphere of unit radius, meet the sphere

in p, q, r, s. Then, since the principal planes at any point of a

surface are at right angles, the angles p, q, r, s are right

angles, and therefore pqrs is ultimately a rectangle whose area

is pq.ps. But the angle between the normals atP and Q
S. S. G. 15
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PO
is ultimately —— , and the angle between the normals at P

PS
and S is ultimately— , where p^ , p^ are the principal radii

Pa pn pa
of curvature at P. Hence pa =—^ , and ps =— , so that the

area of pqrs is ultimately ^
. Hence the measure of

curvature at P, which by definition is the limiting value of

area pqrs . 1

area PQUS ' p^p^

'

Geodesic Lines.

262. Def. a geodesic line on a surface is such that any
small element AB is the shortest line which can be drawn
on the surface from A to B.

The length of the line joining any two indefinitely near

points will clearly be least when the curvature is least. But
by Meunier's theorem, the curvature of a surface through a

given tangent line is least when the section is a normal
section. Hence at any point of a geodesic line on a surface the

plane of the curve contains the normal to the surface, so that

the principal normal of the curve coincides with the normal
to the surface. We therefore have at any point of a geodesic

line on a surface

d^x d^y d"z

ds^ _ ds^ _ ds^

dF_~ dF_~ dF '

dx dy dz

Curvature of Conicoids.

263. Since all parallel sections of a conicoid are similar,

it follows that the indicatrix at any point P of a conicoid is

similar to the central section which is parallel to the tangent
plane at P. Hence the tangents to the lines of curvature

at any point P are parallel to the axes of that central section.
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Now, by Art. 167, the lines which are parallel to the axes
of the central section are the tangent lines at P to the curves
of intersection of the conicoid with the confocals which go
through P. Hence, as we have already proved in Art. 255,
the lines of curvature of a conicoid are the curves of intersec-

tion with confocal conicoids.

264. We can shew that the lines of curvature on a
conicoid are its curves of intersection with confocals in the
following manner.

At points common to

a c

and
of

+ y
a+X ' b +\

we have, by subtraction,

c + X
= 1

•(i),

•(iiX

X r +
a(a + \) h (b + \) c(c + X)

Differentiating (ii) and (iii) we have

xdx ydy . zdz

.(iii).

and

a + X
tA/\A/tA/

+ b+\ c+\

+ T-7:

ydy
+

= 0.

zdz
=

(iv),

a (a + X) ' 6(6 + X) c(c+X)

The elimination of a + X, 6 + X, c + X from (iii), (iv),

(v) gives

00
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2G5. The radius of curvature of any normal section of a

central conicoid may be found as follows.

The radius of curvature of any central section of a coni-

coid through a point P is, by a well-known formula, equal to

—
, where d is the semi-diameter parallel to the tangent at P,

and p is the perpendicular from the centre on the tangent

at P. Hence, by Meunier's Theorem, the radius of curvature

of any normal section of a conicoid through the point P is

equal to — , where p^ is the perpendicular from the centre

on the tangent plane at P, and d is the semi-diameter

parallel to the tangent line at P ; for the cosine of the angle

between the normal section and the central section is — .

P
266. At any point of a line of curvature of a central

conicoid, the rectangle contained hy the diameter parallel to the

tangent at that point and the perpendicular from the centre on

the tangent plane at the point is constant.

Let p be the perpendicular from the centre on the tangent

plane at any point P of a given line of curvature, and let a, j3

be the semi-axes of the central section parallel to the tangent

plane at P. Then, one of the axes, a suppose, is parallel to

the tangent at P to the line of curvature, and the other axis

is of constant length for all points on the line of curvature

[Art. 167, Cor.]. Hence, since jjayS is constant, it follows

that poL is constant throughout the line of curvature.

267. At any point of a geodesic on a central conicoid, the

rectangle contained hy the diameter 'parallel to the tangent at

that p)oint and the perpendicular from the centre on the tangent

plane at the pioint is constant.

The differential equations of a geodesic on the conicoid

aa^ + by"^ + c^^ = 1 are

d^x d^y d^z

ds^ _ ds'^ _ ds^

ax by C2
*
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// // II

or — = 7-=— = A, (i).
ax by cz

We have to prove that 'pr is constant, where

\= ax^ \-ly'^ \- cz"" (ii),

and -2 = aV + 6y + cV (iii).
'p

Differentiating ax' -}- hy^ -{cz'^ = 1 twice with respect to s,

we have
ax"^ + hy'^ + cz'^ + axx' + hyy" + czz" = (iv).

From (i) we have

axx" + hyy" + czz" r>^ c r--\ j /• \

a'«' + by + &z^ r' ^ ^ ^ ^

I It , 1 I tl t
'If 6 7

., ^ axx +bijy + cz z r as „ .... ^ r--\
Also X = —T,—-,

—
r^r^^, 7,—r = -\—7-

, irom (ii) and (in).
a XX + b'yy + czz 1 dp ^ ' ^ ^

]f ds

TT 1 dr 1 dp ^
Hence - -r -^ t- = ^>

r as p ds

and therefore pr is constant.

Ex. 1. The constant pr is the same for all geodesies which pass through
an umbilic.

This follows from the fact that the central section parallel to the tangent
plane at an umbilic is a circle, and therefore the semi-diameter parallel to

the tangent to any geodesic through an umbilic is of constant length.

Ex. 2. The constant pr has the same value for all geodesies which touch
the same line of curvature.

At the point of contact of the line of curvature and a geodesic which
touches it, both p and r are the same for the line of curvature and for the

geodesic.

Ex. 3. Two geodesies which touch the same line of curvature make equal

angles with the lines of curvature through their point of intersection.

From Ex. 2, the semi-diameters parallel to the tangents to the two
geodesies, at their point of intersection P, are equal to one another, and are

therefore equally inclined to the axes of the central section which is parallel

to the tangent plane at P. But the axes of the central section are parallel to

the tangents to the lines of curvature through P; this proves the proposition.
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Ex. 4. Two geodesies which pass through umbilics make equal angles

with the lines of curvature through their point of intersection.

Ex. 5. Any geodesic through an umbilic will pass through the opposite

umbilic.

Ex. 6. The locus of a point which moves so that the sum, or the differ-

ence, of its geodesic distances from two adjacent umbilics is constant, is a
line of curvature.

Ex. 7. All geodesies which join two opposite umbilics are of constant

length.

Ex. 8. The point of intersection of two geodesic tangents to a given line

of curvature, which intersect at right angles, is on a sphere.

Let i\, r^ be the semi-diameters parallel to the tangents to the geodesies

at P, their point of intersection. Then, since the geodesies cut at right angles,

where a and j3 are the semi-axes of the central section parallel to the tangent
plane at P. But, if p be the perpendicular on the tangent plane at P, then

25j'i=:pr2= constant, from Ex. 2. Hence, since pa^ is constant, and also

a^+^^+ OP^, it follows that OP is constant.

Ex. 9. The point of intersection of two geodesic tangents, one to each of

two given lines of curvature, which cut at right angles, is on a sphere.

Examples on Chapter XII.

1. A surface is formed by the revolution of a parabola about

its directrix ; shew that the principal curvatures at any point are

in a constant ratio.

2. If p, p' be the principal radii of curvature of any point of

an ellipsoid on the line of its intersection with a given concentric

sphere, prove that the expression
,
will be invariable.

p + p

3. If itj -1- w^ + 1^3 + w
^
= be the equation to a surface

where u^ is a homogeneous function of x, y, z, of the rth degree,

then u^ + u^ + u^ (Ix + my + nz) = will be the general equation of

surfaces of the second order having the same curvature at the

ori":in.
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4. The normal at each point of a principal section of an
ellipsoid is intersected by the normal at a consecutive point not

on the principal section ; shew that the locus of the point of inter-

section is an ellipse having four (real or imaginary) contacts with
the evolute of the principal section.

5. In the surface y cos— x sin - = 0,

the principal radii of curvature at (x, y, z) are =»=

a

C. Shew that the umbilici of the surface

'^\^
. fy\' .

/^^' = l©*Hi)'^(:
lie on a sphere whose centre is the origin and whose radius is

-
,

abc
equal to —,—

^

.

ao + DC -^ ca

7. The centres of curvature of plane sections of a surface at

any point lie on the surface

{x' + 2/ + z') ("- + ^^ = ;s (a;^ + f).

8. Prove that the line which separates the synclastic from

the anticlastic parts of a surface is a line of curvature, and that

ulong it the inflexional tans^ents coincide.

9. The projections of the lines of curvature of an ellipsoid on
the cyclic planes, by lines parallel to the greatest axis of the

surface, are confocal conies.

10. If one of the lines of curvature on a developable surface

lies on a sphere all the other lines of curvature, other than the

rectilineal ones, lie on concentric spheres.

11. A plane curve is wrapped upon a developable surface.

If p is the radius of curvature of the plane curve at any point, p
the corresponding radius of circular curvature of the curve upon
the surface, R the corresponding princij^al radius of curvature of

the surface, and ^ the angle at which the curve intersects the

sin^ (^ _ 1 I

K p p
generator of the surface.
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12. If one system of lines of curvature of a surface are

ciicles, the surface is the envelope of a sphere whose centre moves
on a given curve.

13. If a geodesic line is either a line of curvature or a plane

curve it is both ; but a plane line of curvature is not necessarily

geodesic.

Shew that if one series of the lines of curvature is geodesic

they are all repetitions of the same plane curve.

14. Shew that if the normal to a surface always passes

through a given curve, one set of the lines of curvature are circles;

and that those normals which pass through a given point on the

curve are generating lines of a right cone whose axis is the

tangent at that point. Hence shew that if the normal always
passes through two curves, these curves must be conies in planes

at right angles, the foci of one being the vertices of the other.

15. Find the differential equation of the projection on the

plane xy of each family of lines of curvature of the surface which
is the envelope of a sphere whose centre lies on the parabola

o? + ^ay = 0, ;:; = 0, and which passes through the origin.

16. Shew that the principal curvatures at any point of a
surface are given by the equation

dx

dm
dx

dn

dx

1
+ -,

dl_

dy

dm
dy

dn

dy

+

dl

Tz

dmx

dz

dn

dz

1
+ -

= 0,

P

I, m, n are the direction-cosines of the normal at thewhere
poiut.

17. The tangent planes to the surface of centres at the two
points where any normal meets it are at right angles.

IS. Shew that the point for which cc = y = » is an umbilic of

a;"* + 2/"* + z"^ = a"*,

and the radius of curvature there is

a

m — 1
(3)

TO—

2

S'l
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19. In a hyperbolic paraboloid, of whicli the principal para-

bolas are equal, the algebraic sum of the distances of all points of

the same line of curvature from two fixed rectilinear generators is

constant.

20. Along the normal at a point P of an ellipsoid is measured
PQ of a length inversely proportional to the perjDendicular from
the centre on the tangent j)lane at P; prove that the locus of Q is

another ellipsoid, and that the envelope of all such ellipsoids is the

"surface of centres," that is the locus of the centres of principal

curvature.

21. Shew that the specific curvature at any point of the

surface xyz = abc varies as the fourth power of the perpendicular

from the origin on the tangent plane at the point, and that at an

umbilicus it is 4 (ahc)~^.

22. If a surface have one principal radius of curvature con-

stant it is the envelope of a sphere of constant radius.

x^ ij^ ^
23. Find the umbilici of the surface v ^ + — = k", andabc

X II z
shew that at the umbilicus - = ^ = - the directions of the threeabc
lines of curvature are given by the equations

dx chi dy dz dz dx . .— = -,- , -, - = and — = -— respectively.abbe c a ^
"^

24. If two geodesies be drawn on an ellipsoid from any point

to two fixed points, the sine of the angle between them varies as

the perpendicular on the tangent plane at the point.

25. Shew that on a surface of revolution, the distance of any
point of a geodesic from the axis varies as the cosecant of the

angle between the geodesic and the meridian.

26. If a geodesic line be drawn on a developable surface and
cut any generating line of the surface at an angle »// and at a

distance t from the edge of regression measured along the generator,

prove that

-y- + cot W . t = p,
dij/
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where p is the radius of curvature of the edge of regression

at the point where the generator touches it.

27. Shew that the tangent to a geodesic or line of curvature

on a quadric always touches a geodesic or line of curvature

respectively on a confocal quadric.

28. Shew that the reciprocals of the radii of curvature and

torsion of a curve drawn on a developable surface are

sin^ 9 , sin 6 cos da
and 1- -r-

,

p cos a p as

where p is the principal radius of curvature of the surface at the

point, 6 the angle the tangent line to the curve makes with the

generator through the point, and a the angle between the normal

to the surface and the principal normal of the curve.

If a geodesic on a developable surface be a plane curve it must
be one of the generators or else the surface must be a cylinder.

29. If - and - be the curvature and tortuosity at any point of

a <]jeodesic drawn on a surface, and — , — be the principal curvatures

.
Pi P2

of the surface at that point, shew that

o" vPi py \P2 p

30. Through a given generator of a hyperboloid of one sheet,

draw a variable plane ; this will touch the surface at some point

A on the generator and will contain the normal to the surface at

another point B. Shew that the sum of the square roots of the

measures of curvature of the surface at A and B is constant for all

planes through this generator.

Hence shew that the same proposition is true for any skew
surface.

31. If tcT be the pitch of the screw by which any generator of

a skew surface twists into its consecutive position, shew that

m^ + pp = 0, where p, p' are the principal radii of curvature at tho

point where the shortest distance between the two consecutive

irenerators meets them.
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32. If a geodesic be drawn on an ellipsoid from an umbilicus

to an extremity of the mean axis, prove that its radius of torsion

at the latter point is

r, I . sin 6 cos 6,

where a, h, c are the semi-axes of the ellipsoid arranged in

descending order of magnitude.

33. If from any point on a surface a number of geodesic

lines be drawn in all directions, shew (1) that those which have

the greatest and least torsion bisect the angles between the

principal sections, and (2) that the radius of torsion of any line,

making an angle 6 with a principal section, is given by the

equation

where p^ , p^ are the radii of curvature of the principal sections.

34. Find the equation to the surface which is the locus of the

central circular sections of a series of confocal ellipsoids. Prove

that this surface cuts all the ellipsoids orthogonally, and that the

orthogonal trajectories of the circles, drawn upon the surface, are

lines of curvature upon two hyperboloids confocal with the

ellipsoids.

35. If a cone of revolution circumscribe an ellipsoid, prove

that the plane of contact divides the ellipsoid into two portions

whose total curvatures are 27r(l +sina) and 27r(l — sina), where

2a is the vertical angle of the cone.

36. If any cylinder circumscribes an ellipsoid it divides it into

portions whose integral curvatures are equal.

37. The measure of curvature at any point of the surface

2.22 2

T^ 2 = 1 IS -—,
3V2 >

a c (c + r')

where r is the length of the generator through the point cut off

by the plane z = 0.

38. Prove that, if radii be drawn to a sphere parallel to the

principal normals at every point of a closed curve of continuous
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curvature, the locus of their extremities divides the surface of the

sphere into two equal parts.

Hence shew that the total curvature of a geodesic triangle on any
surface is equal to the excess of its angles over two right angles.

39. Define the radius of geodesic curvature of a curve drawn
upon a surface, and shew that at any point it is equal to R cot <^,

where R is the radius of curvature of the normal section contain-

ing the tangent to the given curve, and ^ is the inclination of the

osculating plane to that section.

40. If a surface roll on a second surface without rotation

about the common normal, and the trace on one surface is a

geodesic, the trace on the other surface is a geodesic.

Hence prove that Gauss's measure of curvature is constant for

all areas enclosed by geodesies.
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1. The inclinations to the horizon of two lines which are at

right angles to one another are a, ^, the lines being on a plane in-

clined to the horizon at an angle 0; shew that sin^^ = sin^a + sin^yS.

2. Shew that the volume of the tetrahedron of which a pair

of opposite edges is formed by lengths r, r' on the straight lines

whose equations are

x-a y -h z- G ^ x-a y -h' z-c'

I m ti I' m' 7t' '

is \rr a - a', h -h', c-c'

V

n

,
'ill , n

3. A parallelogram of paper is creased along its shorter

diagonal, and the two halves are folded so as to make an angle 6

with each other : find the distance between the extremities of the

longer diagonal, and prove that it is equal to the shorter, if

Q
sin^ - = cot a cot /?, where a and y8 are the angles the sides make

with the shorter diagonal.

4. The ends of a straight line lie on two fixed planes which
are at right angles to one another, and the straight line subtends
a right angle at each of two given points: shew that the locus

of its middle point is a plane.

5. The equations of three straight lines are oj — z = l, a; = 0;
z-x=l^ y = 0; and x — y = l, z — 0; prove that the locus of all

straight lines which intersect the three lines is

x^ + y^ + z^ - 2yz - 2zx - 2xy = 1.
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6. Three fixed lines are cut by any other line in the points

A, i?, C, and D is the point on the line ABC such that {ABCD}
is harmonic: shew that the locus of /) is a straight line.

7. A point moves so that its perpendicular distances from
two given lines are in a constant ratio: shew that its locus is an
hyperboloid whose circular sections are perpendicular to the given

lines.

8. A straight line slides upon two fixed straight lines in

such a way that the part intercepted subtends a right angle at

a fixed point : shew that the line generates a conicoid.

9. A sphere touches the six edges of a tetrahedron : shew
that the three lines joining pairs of opposite points of contact

will meet in a point.

10. A straight line moves in such a manner that each of

four fixed points on the line is always on a given plane; shew
that any other fixed point on the line describes a plane ellipse.

11. Any three points jP, Q, JR, and the polar planes of those

points with reference to any conicoid are taken. JPQi, -P-^j are
the perpendiculars from F on the polar planes of Q and H respec-

tively
; QF^, QP^ are the perpendiculars from Q on the polar

planes of R and F respectively ; and RF^ , FQ^ are the perpen-
diculars from F on the polar planes of F and Q respectively.

Shew that FQ^ . QF^_ . FF^ = FF^ . QF„ . FQ^.

1 2. Shew that, if the equation

ax^ + 6y- + cz^ + ^fyz 4- "Igzx + Ihxy = 0,

represent two planes, the planes which bisect the angles between
them are given by the equation

X

ax + hy + gZy

1

y ,

hx -I- hy -{-fzy

1

gx +fy + cz

1

ch-fg

13.

of- gh hg - hf

Shew that, if the equation

ace" + hrf + c:^ + yyz + Igzx + Ihxy = 0,

0.
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represent two planes, the product of the perpendiculars on the

planes from the point (x, y, z) is

ax^ + by'' + cz^ + ^fyz + ^gzx + Ihxy

(a + b + cf + ^{r- bcY + 4 (/ - caf + 4(A' - ahf
'

14. li U= {abcdlmnpqr) {xyzwY = is the equation of a cone,

shew that the co-ordinates of the vertex satisfy the equations

dU
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18. The ellipse lfx^ + a-if-a%^ = 0, ^=0 is a plane section

of a cone whose equation, referred to its principal axes, is

/Jyx" + yay"^ + afiz^ = 0.

Shew that the vertex of the cone is on the curve

\ a + /3 + y j (. ySy + ya + ayS

r 27 2 2 \ 2
I

a z
\

19. Shew that the conicoid ax" + hy^ + cz^ + d=0 is its own
polar reciprocal with respect to any one of the conicoids

± ax' ± hy' =•= cz" =fc cZ = 0.

20. Find the locus of the centre of the sphere w^hich passes

through two circular sections of a conicoid which are of opposite

systems and whose planes are equidistant from the centre.

21. Prove that the foci of sections of an ellipsoid made by
a series of parallel planes lie on an ellipse.

22. Shew that the perpendicular from the centre on the
/y*" J_ /^fi" ^"^ (lie

tangent plane at any point of ~
s = 1 is —^^ ; , where r

is the length of a generator through the point cut oflf by the plane

of xy.

23. The six lines AB', B'C, Cxi\ A'B, BC\ C'A are six gene-

rators of the hyperboloid ax' + h'if + cz^ = \, and AB', B'C, CA',

are respectively parallel to A'B, BC, C'A ; shew that, if the

parallelopiped of which the six generators are edges be completed,

the corners which are not on the hyperboloid will be on

ax' + hy^ + cz' + 3 = 0.

24. Shew that at any point the rate per unit of length of

X' + ?/ z^
generator at which the normal to the hyperboloid ~— ~2 = 1

a c

ft

twists round a generator as we move along it is — „ , where r
c + r^

is the distance, measured along the generator, of the point from
the plane of xy.
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25. ABGBQ is a twisted polygon all whose angles are right

angles; AB, CD lying on fixed straight lines. Shew that if ^,
B, C, D be any points on their respective lines, the locus of P or

Q is an hyperboloid of one sheet.

26. If I be the latus-rectum of a parabola, and l^, l^, l^ the

latera recta of its orthogonal projections upon a rectangular system
of co-ordinate planes making angles a, /3 and y respectively with
the plane of the original parabola, then

2 cos^a cos'^B cos^v

l^ It li li

27. If the six points on a conicoid, normals at which meet
in a point, are joined in pairs by three lines, prove that whatever
set of joining lines is taken the sum of the squares of the semi-

diameters parallel to them is constant.

28. A conicoid whose centre is D touches the three planes

YOZ, ZOX, XOY in A, B, G respectively : shew that the lines

through A, B, C parallel respectively to OX, OY, OZ, and the

line OD are four generators of an hyperboloid of one sheet.

29. Three perpendicular tangent planes are drawn, one to

each of three confocal conicoids : shew that the normals at the

points of contact of the planes, and the line joining their point

of intersection to the centre of the conicoids are generators of an
hyperboloid of one sheet.

30. If any line through a fixed point meet any number of

fixed planes in the points -4, B, C , and on the line a point X
be taken such that -^-p. = ^^ + ^ = + y— + . .

.
; shew that the locus

(JX (JA (JJj (JL/

of X will be a plane.

31. If any line through a fixed point meet any given sur-

face in the points Ay B, C, D..., and X be taken such that

OX^OA^OB^OC'^iW ''"''' ^^^"^ ""'^^ *^^ ^''''''' of Z be a

plane.

S. S. G. 16
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32. Two straight lines drawn in fixed directions through any
point meet a given surface in the points A, B, C, D... and

A, B,C , D ...; shew that ^^, ^^, ^^, ^jjr~ is constant.

33. Prove that the pedal of a helix with regard to any point

on its axis is a curve lying on a hyperboloid of one sheet ; and
that, if the pitch of the helix be ^tt, this curve will cut perpen-

dicularly all the generators of one system of the hyperboloid.

34. A curve is di-awn on a sphere of radius a cutting all the
meridians at a constant angle ; shew (i) that the foot of the per-

pendicular from the centre of the sphere upon the osculating plane
is the centre of curvature

; (2) that if p, o- be the radii of curva-

ture and torsion crp' = a^,

35. Prove that the shortest distance of the tangents at tv.^o

points FQ of any curve is ultimately equal to --— , where p and

(T are the radii of curvature and torsion.

36. Tangent planes to a conicoid are drawn at points along a
line of curvature : shew that the perpendiculars from the centre

on their planes lie on a quadric cone, that the different cones so

formed are confocal, and that the focal lines of the cones are
perpendicular to the circular sections of the conicoid.

37. A curve is drawn making a constant angle a with the
axis of a paraboloid of revolution : prove (i) that its projection

on a plane perpendicular to the axis is the involute of a circle

of radius Zcota, (ii) that its radii of curvature p and tori<ion a-

are given by the equations p^sin^a = o-^ sin^a cos^a = r° — -^^ cot^a,

where r is the distance of the point from the axis, and I is the
semi-latus rectum of the generating parabola.
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AN

ELEMENTAEY TEEATISE
ON

CONIC SECTIONS.
Fourth Edition. Crowu 8vo. 7s. 6d.

The Academy says :
—" The best elementary work on these curves which

has come under our notice. A student who has mastered its contents is in a

good position for attacking scholarship papers at the universities. ... There is

an ample store of exercises, and many useful examples are worked out in a

very suggestive manner."

The Journal of Education says :—"We can hardly recall any mathematical

text-book which in neatness, lucidity, and judgment displayed, alike in choice

of subjects and of the methods of working, can compare with this...,We have

no hesitation in recommending it as the book to be put in the hands of the

beginner."

Nature says:—"A thoroughly excellent elementary treatise. For a long

time we have been exercised in mind when asked to recommend a book on

Conies. To all its predecessors, with their varying shades of goodness and

badness, we had some objection or other to urge. Mr Smith has just met our

want ; his book is right up to the time, and is admirably adapted for the pre-

paration of pupils for college scholarships ; for students at the University it

is a fitting introduction to that as yet unapproached work, Salmon's treatise

on these curves. The text is excellent, full in alternative proofs, suggestive

in its methods ; the numerous worked-out exercises in addition to those col-

lected at the close of the several chapters, render the reader independent

of any other work,"

The Glasgow Herald says:—"This is a valuable contribution to mathe-

matical literature. The arrangement will be generally admitted as judicious.

He commences with investigations of the more elementary properties of the

ellipse, parabola, and hyperbola, as the best preliminary to the consideration

of the general equations of the second degree...Abundant examples, many of

them with complete solutions, accompany each chapter, and add greatly to

the value of the book."

MACMILLAN AND CO., LONDON.
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ELEMENTARY ALGEBEA.
Globe 8vo. 4s. GJ.

In this work the Author has endeavoured to explain the principles of

Algebra in as simple a manner as possible for the benefit of beginners,

bestowing great care upon the explanations and proofs of the fundamental

operations and rules.

The Athenceum says :
—"This Elementary Algebra treats the subject up to

the binomial theorem for a positive integral exponent, and so far as it goes

deserves the highest commendation. Mr Smith has avoided the danger

which, as the preface shows, besets writers of treatises like the one before us

—that of 'paying too little attention to the groundwork of their subject.'

All through the volume the reasoning underlying the processes of algebra is

kept prominently in view, and thus a real interest is infused into the subject,

while the educational value of the study is immensely increased. This

valuable characteristic of the book is observable as much in the earUest as in

the most advanced chapters, and we doubt not that beginners will appreciate

it... The examjjles, which are very numerous, are a notable feature of the book,

and, so far as we have investigated them, are singularly well selected and
arranged, and the solution of them on the students' part, after careful

perusal of the chapters to which they are appended, cannot fail to be greatly

'for the benefit of beginners.' "

The Schoolmaster says:—"The examples are numerous, well selected, and
carefully arranged. The volume has many good features in its pages, and
beginners will find the subject thoroughly placed before them, and the road

through the science rendered easy to no small degree."

The School Guardian says :
—"The examples and exercises are skilfully

constructed and grouped... It extends as far as the simpler cases of the

binomial theorem, and, no matter at what page it may be opened, it will be

found a model of accurate and strict method."
Nature says:—"It is a pleasure to come across an algebra-book which has

manifestly not been written in order merely to prepare students to pass an
examination. Not that we think Mr Smith's book unsuitable for this purpose

;

indeed, with its carefully-worked examples, graduated sets of exercises, and
regularly-recurring miscellaneous examination papers, it compares favourably

with the most approved 'grinders' books...He shows to great advantage
as a teacher, his style of exposition being most lucid: the average student

ought to find the book easy and pleasant reading. The second set of exercises

on the Binomial Theorem is worth specially noting."

The Educational Times says:—"Mr Charles Smith, Tutor of Sidney
Sussex College, Cambridge, whose Elementary Treatise on Conic Sections is so

well known to most students of Mathematics, has done us very good service

in publishing an Elementary Algebra. There is a logical clearness about his

expositions and the order of his chapters for which both schoolboys and
schoolmasters should be, and will be, very grateful. His treatment of the

Theory of Indices, for instance, though really a very simple matter, is admir-

able for the way in which it sets forth the difficulties of the subject, and then

solves them."

ALGEBRA FOR SCHOOLS AND COLLEGES.
Globe 8vo. In the Press.

MACMILLAN AND CO., LONDON.
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